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Abstract 

 
Since the multidimensional knapsack problems are NP-hard problems, the exact 

solutions of knapsack problems often need excessive computing time and storage space.  

Thus, heuristic approaches are more practical for multidimensional knapsack problems as 

problems get large.  This thesis presents the results of an empirical study of the 

performance of heuristic solution procedures based on the coefficients correlation 

structures and constraint slackness settings.  In this thesis, the three representative greedy 

heuristics, Toyoda, Senju and Toyoda, and Loulou and Michaelides’ methods, are 

studied.  The purpose of this research is to explore which heuristic of the three 

representative greedy heuristics performs best under certain combinations of conditions 

between constraint slackness and correlation structures.  This thesis examines three 

heuristics over 1120 problems which are all the two-dimensional knapsack problems 

(2KPs) with 100 variables created by four constraint slackness settings and 45 feasible 

correlation structures.  Then we analyze why the best heuristic behaves as it does as a 

function of problem characteristics.  Finally we present two new heuristics using 

knowledge gained in the study.  When these new heuristics are competitively tested 

against the three representative greedy heuristics, the results show the new heuristics 

perform better. 
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EMPIRICAL ANALYSIS OF VARIOUS  

MULTI-DIMENSIONAL KNAPSACK HEURISTICS 
 
 

I. Introduction 

1.1  Motivation 
 

Obtaining an exact solution to an integer programming problem in real practice is 

sometimes less practical in comparison to an easily computed method of acquiring near-

optimal solutions via heuristics.  As problems get large, exact solutions often need 

excessive computing time and storage space.  Many times, these large problems are 

merely estimates of reality so an optimal solution does not have much meaning.  

Considering the imprecision of real-world problem data, and that a precise solution in 

reality may be meaningless, obtaining a near-optimal solution in a reasonable running 

time may better satisfy a practitioner in the real world.   

The knapsack problem has wide application in many areas.  Its general form, the 

multidimensional knapsack problem (MKP), has frequently been used to model various 

decision-making processes such as resource-allocation, cargo loading, capital budgeting 

and cutting stock problems.  As with other combinatorial problems, computation time 

increases rapidly with problem size.  Many authors have developed heuristic methods to 

solve MKPs.  Greedy algorithms are commonly used and often yield good solutions.   

These approaches vary in how they treat the problem and select items for inclusion in the 

knapsack.  Little, if anything, has been done to understand how heuristic differences 

affect performance.  This thesis provides empirical analyses of heuristics for 
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multidimensional knapsack problems and examines how various heuristics function 

according to particular test problem characteristics.   

1.2  Background 

1.2.1  The 0 – 1 Knapsack Problem  

Suppose there are n projects.  The jth project, j = 1,…, n, has a cost aj and a value 

cj.  A project is either picked or rejected.  There is a resource limit of b available for 

which the projects compete.  The problem of choosing a subset of projects to maximize 

the sum of the values while not exceeding the resource constraint is the 0 – 1 knapsack 

problem, 

( )








∈≤∑∑
==

n

j
jj

n

j
jj xbxaxc

11

1,0,:max  .                                          (1) 

This problem is called the knapsack problem because of the analogy to a hiker’s 

problem of deciding what should be put in a knapsack given a weight or volume 

limitation on how much can be carried.  In general, problems of this sort may have m 

constraints.  We then refer to the problem as the multidimensional knapsack problem 

(MKP) (Nemhauser and Wolsey, 1988).  With the MKP, project selection must 

simultaneously satisfy all m constraints. 

1.2.2  The multidimensional knapsack problem (MKP) 

The MKP is a 0-1 programming problem of the following form: 

Maximize  

∑
=

=
n

j
jj xcZ
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                                                              (2)                              
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mibxa
n

j
ijij ,...,2,1

1

=≤∑
=

                                            (3) 

njorx j ,...,2,110 ==                                           (4) 

where c  and all .  Additionally at least one  for each j.  A special case 

of the MKP is the two-dimensional knapsack problem (2KP), where m = 2. 

0>j 0≥ija 0>ija

1.3  Problem  

Many authors have developed approximate heuristic methods for MKPs (Senju 

and Toyoda, 1968; Toyoda, 1975; Loulou and Michaelides, 1979; Pirkul, 1987).  Most 

competitively test their heuristic against other heuristics or against some common 

problem set.  Few ever focus on why their approach does well on some problems but not 

so well on other problems.  In short, little has been done to determine why a heuristic 

does well. 

1.4  Objective  

The objective of this thesis is to understand what makes a “best” heuristic.  In 

other words, why does the best heuristic work well and why do the poorer heuristics not 

work so well.  This is difficult to answer since performance varies by type of problem.  

We will focus on constraint tightness, correlation between objective function and 

constraints, and interconstraint correlation.  This is done through the generalizing of test 

problems, coding heuristic methods (Senju and Toyoda, Toyoda, and Loulou and 

Michaelides method), running all computer algorithms against a common test set, and 

analyzing the results.  The comparison of these three different methods on generalized 

3 



 

test problems is based on a relative error measure.  The relative error is defined as 

 where Z/)( heuOPT ZZ − OPTZ heu is the heuristic objective function value and ZOPT is the 

optimal, or best known objective function value for the problem.  The minimum relative 

error gives a better solution as that solution is closer to the optimal solution.  Raw 

objective function values are also used when compiling counts of best performing 

heuristic. 

1.5  Overview 

Chapter 2 provides relevant background information.  It traces an overview of 

empirical analyses of heuristics and those concepts that apply to the empirical analysis of 

algorithms.  Chapter 3 then describes how to examine the three representative greedy 

heuristics, how to analyze comparative data and how to compare heuristic performance.  

Chapter 4 presents the results of an empirical study of the three representative greedy 

heuristics.  Next, Chapter 5 presents two new heuristics and their results.  Finally, 

Chapter 6 summarizes this work's findings, outlines contributions of this work, and 

identifies areas for further research. 

 

 

4 



 

II. Review of Related Literature 

2.1  Introduction 

The objective of this literature review is to provide an overview of empirical 

analyses of heuristics and those concepts that apply to the empirical analysis of 

algorithms.  Additionally, heuristics for multi-dimensional knapsack problems are 

discussed.    

2.2  An Empirical Science  

Performance of algorithms may be analyzed in two ways.  One is to analyze 

performance analytically relying on the methods of deductive mathematics.  The other is 

to analyze performance empirically using computational experiments.  The former, 

mathematical, methods are further developed than the empirical science.  However, the 

mathematic results do not usually indicate how an algorithm is going to perform on real 

problems.  If we want to know how an algorithm works on typical problems, 

computational experiments give much more insight into heuristic performance. 

Hooker (1994) suggested, “Empirical science involves theory.” Through 

empirical analysis, we can determine how algorithms work and why algorithms perform 

well or poorly.  Thus, we should analyze algorithms to gain insight into theory.   

Hooker said, “ An empirical science of algorithms would immediately sidestep 

several of the problems that beset a purely deductive science.” Hooker supports this by 

stating that an empirical science 

• does not rely on proving hard worst-case and average-case theorems; 
 
• unlike worst-case analysis, can focus on typical problems; 
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• unlike average-case analysis, need not restrict itself to a simple and unrealistic 
distribution of random problems; 

 
• can finesse the issue of characterizing a typical class of problems 
 
(Hooker, 1994). 

 2.3  Empirical analysis of heuristics 

An efficient heuristic provides a correct solution, not necessarily exact or optimal, 

in a reasonable amount of time and resources.  Heuristics are generally efficient in terms 

of solution quality, computer resource requirements and computer solving time.   

Complexity theory classifies problems according to their solution difficulty.  

Many problems are easy to solve as there exists a provably polynomial time algorithm for 

the problem where polynomial means algorithm run time is some polynomial function of 

problem size.  Many other problems are difficult to solve as there is no provable 

polynomial time algorithm for the problems.  These are referred to as NP problems. 

NP Problems are very difficult to solve and sometimes, impossible to solve in 

reasonable time.  Heuristics, however, offer a viable alternative.  With computing power 

increasing, heuristics and in particular local search, have come into their own in the 

optimization world.  The next section introduces knapsack and greedy MKP heuristics.  

We leave local search heuristics for the MKP as a future research area.   

2.3.1  Knapsack Problem. 

 The objective of the knapsack problem is to maximize the value of the items 

selected without exceeding the resource limits. 

( )








∈≤∑∑
==

n

j
jj

n

j
jj xbxaxc

11

1,0,:max                                          (1) 
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To solve a knapsack problem using a heuristic algorithm, let xj be a project of 

value cj, and resource cost aj.  The importance of the project can be determined by 

considering the ratio cj /aj .  Sequence the projects so the following holds, 

n

n

a
c

a
c

a
c

≥≥≥ ...
2

2

1

1                                                (2) 

and, considering each item in non-increasing value-resource ratio, add as many items as 

possible, into the knapsack until it is full.   

2.3.2  Greedy algorithms for multi-dimensional knapsack problems 

The MKP is encountered when one has to decide how to choose projects to satisfy 

multiple resource constraints.  Many effective solution procedures for the MKP have 

been developed.  Each procedure uses some penalty cost (vj) to quantify the relative 

worth of the project.   

Toyoda (1975) defined an effective gradient as a means to find a good 

approximate solution to the MKP.  Toyoda’s effective gradient is a measure of element 

worth per unit cost in terms of all resources used.  Toyoda first normalized each 

constraint, so all right-hand side (RHS) values were 1.  His penalty cost is defined as 

follows: 

∑
∑=

=

=
m

i
m

i
i

iij
j

b

ba
v

1

1

20

0

)(
                                                     (3) 

where b  is resource used in constraint i, and 0 ≤  ≤ 1 for i = 1,…, m where m is the 

number of constraints.  Toyoda’s method starts with an empty knapsack and then adds 

the element with the highest scoring effective gradient until a knapsack constraint is met.  

0
i

0
ib
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The value vj is updated at each iteration.  It is called a primal effective gradient method 

because the solution is always feasible.  An overview of this approach is as follows: 

 Step 1: Start with all items designated as not contained in the knapsacks. 

 Step 2: Compute the effective gradient for each candidate element not currently 

in the knapsack and feasible: 
j

j
j v

c
=G . 

Step 3: Order the elements in descending order according to their effective 
gradient measures. 

 
Step 4: Add highest scoring element to knapsacks, retaining problem feasibility. 

Senju and Toyoda’s (1968) method is very similar to Toyoda’s method.  

However, their approach starts with all items designated as contained in the knapsack.  

The heuristic then drops projects (xj) according to ascending order of a dual effective 

gradient until feasibility is achieved.  Their approach is a two-pass algorithm since the 

authors realized the computed gradients might cause the algorithm to “over shoot” the 

feasibility target.  Thus, once feasible, the Senju – Toyoda method will attempt to restore 

some items previously dropped.  To define their penalty cost (vj), let aij be constraint 

coefficient of jth constraint, Then, Pi = {ai1, ai2, …, aim} is the vector of resource costs for 

element i of n elements.  Let R = { , i = 1, …, n} be the vector of total resource 

consumed in each of m resource constraints, and L = {b

∑
=

m

j
ija

1

1, b2, …, bm} be the vector of 

right- hand side coefficients and finally slack variables: S = R – L.   

Consequently, a dual effective gradient is: 







⋅

=
SP

S
c

i
iiG .  An overview of this 

dual approach is as follows: 

 Step 1: Start with all items designated as contained in the knapsacks. 
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 Step 2: Compute an effective gradient for each element. 
 
 Step 3: Order the elements in ascending order according to their effective 

gradient measures. 
 
 Step 4: Drop elements from lowest effective gradient measure until feasibility 

with respect to all constraints is achieved. 
 
 Step 5: Re-consider dropped elements for inclusion if all constraints have 

resources remaining. 
 

Loulou and Michaelides’ approach (1979) expands on Toyoda’s (1975) approach.  

If two candidate projects have an equal , it is more advantageous to select first that 

project which consumes less resource.  They proposed four different ways to select the 

penalty factor .  To calculate the effective gradient, three important concepts should be 

introduced. 

jv

jv

iji aDA + :  total consumption of resource i if xj is added to the current solution  
where DAi is an amount of resource consumed so far. 

 
)(1 iji aDA +− : amount of resource i remaining if xj is added to current solution 

∑ ∈
−

SCk ijik aa : future potential demand for resource i if xj is added to current 
solution where SC is a set of candidate variables. 

 
The first choice of penalty factor is then: jv

( ) })1/(){(,...,1 ijiijikSCkijimij aDAaaaDAMaxV −−−+= ∑ ∈= .                  (4) 

The second method chooses penalty factor v  to decrease the importance of the 

ratio by taking its square root: 

j

( ) })1/(){( 2/12/1
,...,1 ijiijikSCkijimij aDAaaaDAMaxV −−−+= ∑ ∈= .            (5) 
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Third and fourth methods are modified from the first and second methods, 

respectively.  These approaches use  until Maxjv i DAi becomes “close enough” to 1 and, 

from then on, select projects according to their profits alone.  This modification is called 

a switch.  The switch is actuated when some resource becomes so scarce as to suggest 

that the algorithm is close to terminating.   

Pirkul (1987) and Glover(1977) use a multiplier method and surrogate constraints 

to transform the MKP into a knapsack problem whose solution provides a bound to the 

original MKP.  A surrogate constraint is an inequality implied by the constraints of an 

integer programming problem (Glover, 1968).  A surrogate constraint is formed using a 

non-negative linear combination of the constraints.  The surrogate problem is defined as 

follows:  

Njx
bxASt
xcZ

j

s

∈∀∈
≤

=

}1,0{
)(.
max)(

µµ
µ

                                                    (6) 

where µ is positive multiplier vector of size m.  The best bound using this scheme is 

determined by locating a set of multipliers µ* such that 

 )(*)( µµ
µ ss ZMinZ =                                                    (7) 

If µ* is known, then bounds from *)(µsZ are better than bounds from both a LP-

relaxation and a Lagrangian relaxation (Glover, 1968).  Notice that problem (6) is simply 

a 0 – 1 knapsack problem of the form in equation (1). 

Pirkul (1987) solves a series of continuous knapsack problems while conducting a 

single dimensional search process for each µi.  Alternatively, he could have used the dual 
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variables associated with each constraint in the linear programming relaxation.  For 

Pirkul’s approach, (1) determine a set of surrogate multipliers using dual variables from 

the relaxation.  Then (2) calculate C jj A)(/ µ  ratios, re-indexing decision variables 

according to the decreasing order of these ratios.  And (3), sequentially fix variables to 1, 

considered in index order, retaining problem feasibility.  Denote this solution X0 and 

define S  as the set of variables set to 1.  Finally, (4) for each j∈S}1|{1 == jxj 1 set xj = 0 

and repeat (3) to define a new feasible solution that temporarily excludes an xj from 

consideration. 

Osorio et al. (2002) improved on Glover’s approach by introducing cutting and 

surrogate analysis.  They fix some variables to zero and separate the rest into two groups, 

those that tend to be zero and those that tend to be one in an optimal solution.  Using an 

initial feasible solution, they generate logic cuts based on analysis before solving the 

problem using branch-and-bound.  The dual surrogate constraint provides a useful 

relaxation of the constraint set, and can be paired with the objective function.  The 

resulting surrogate has the following property: 

∑∑ ∑
+∈+∈∈

≤
NMi

ii
NMiNj

jiji buxau )(                                                (8) 

where u is the surrogate multiplier vector.  Since ∑ ui bi is the continuous LP relaxed 

solution, this is the current upper bound (UB).   

Now, constraint pairing is, 

LBxc
Nj

jj ≥∑
∈

                                                         (9) 

UBxau
NMiNj

jiji ≤∑ ∑
+∈∈

)(                                                 (10) 
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Defining S as a set that contains the indices of x variables whose values in the 

relaxed LP solution are equal to zero, and making ∑
+∈

=
NMi

jijj sau , the resulting combined 

constraint can be expressed as 

∑
∈

−≤−
Sj

jjj LBUBxcs )( .                                            (11) 

Constraint (11) makes the bounds on the components of x stronger.  Apparently, 

the value of sj – cj is larger than the value of UB – LB, the corresponding xj must be zero.  

UB cannot be changed because it is the solution from an LP relaxation of the problem.  

Thus, if we get a better LB, we can increase the number of integer variables fixed to zero.  

This decreases the number of variables to be considered in the branch-and-bound 

algorithm. 

2.3.3  Experimental comparison of heuristics for the knapsack problem 

General greedy algorithms for MKPs usually give different answers based on the 

problem characteristics.  Zanakis (1977) compared three heuristic methods (Senju-

Toyoda (1968), Kochenberger et al. (1974), and Hillier (1969)).  For the comparison, he 

created a set of randomly generated 0-1 test problems with nonnegative coefficients and 

also used benchmark test problems.  Zanakis controlled the number of variables (V), (20, 

60 ,100, 200, 500 and 1000), the number of constraints(C), (20, 60, 100 and 1000), and 

the degree of constraint slackness (30%, 50%, and 90%) in the test problems.  He 

measured computer running time, error and relative error on the test problems.  Zanakis 

results suggest all three methods have solution times that increase linearly up to 40-50 

variables and 200 constraints but exponentially thereafter, and much faster with respect to 

the number of variables (V) than constraints (C).  Hillier’s (1969) algorithm was the most 
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accurate but much slower than the other two.  Kochenberger’s et al. (1974) heuristic was 

the fastest of the three with tight constraints and the most accurate with loose constraints.  

In general the Senju-Toyoda (1968) algorithm was the fastest, but least accurate on small 

and medium size problem.  Therefore, Zanakis suggested selecting the best heuristics 

based on the problem characteristics.  Loulou and Michaelides made a similar suggestion 

based on their research results (1979). 

Fox and Nachtsheim (1990) evaluated six greedy selection rules on zero-one 

knapsack problems.  They used six rules (I through VI) according to how to choose the 

penalty factor (wj).  The importance of the project (gj) can be said to be 

where w∑= ijijj awcg / j represents a “ weight” assigned to constraint i reflecting its 

“importance” or the relative “scarcity of resource i ”.  A greedy algorithm selects xi, and 

sets it to 1 according to the largest gj .  Rules I, II and III are based on Fox and Scudder 

(1985).  For Rule I, let and be “the weight assigned to constraint i and the amount 

of resource i remaining just prior to the pth application”, and let where 

C is the set of constraints.  Note that b .  Rule I is as follows: 

p
iw p

ib

}{minmin
p

iCi
p bb ∈=

0min >p



 =

=
Otherwise

bbif
w

pp
ip

i ,0
,1 min                                         (12) 

Rules II and III are modified from Rule I.  A constraint tightness consideration is 

introduced in these rules.  Let be the tightness of constraint i prior to the pth 

application.  In Rule II, 

p
is

∑ ∈
=

Vj ij
p
i ab p

i /s , and in Rule III, ∑ ∈
−=

Vj ij
p

i
p
i abs  where V is 

the set of indices of variables that are possible candidates for setting to one. 
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The weights used are as follows: 



 =

=
Otherwise

ssif
w

pp
ip

i ,0
,1 min                                         (13) 

for all i ∈ C, where .   }{minmin
p
iCi

p ss ∈=

Rule IV is known as simple greedy in that all constraints are regarded as equally 

important and are given an equal penalty factor.  Rule V and VI are based on Toyoda 

(1975).  For their empirical analysis, Fox and Nachtsheim varied four parameters on 1440 

randomly generated test problems.  Their parameters were number of variables, number 

of constraints, constraint matrix density, and slackness.  They measured the average 

relative efficiencies and the average rank of the objective function among all six rules.  

They suggested that Rule IV seems to be the best algorithm in terms of relative 

efficiencies and rank of the objective function.  However, in the mixed slackness 

(tightness value si = 0.3 with probability 0.5 and si = 0.7 with probability 0.5) problems, 

Rule I, from Fox and Scudder (1985) was superior because Rule IV uses the same 

importance and same weight.  Also, they concluded, “ The simplest rule is the best, 

except when the constraints exhibit mixed slackness.” 

2.3.4  Studies into effects of correlation on solution procedure performance  

Some MKPs can be quickly solved even if n is very large, while other problems 

cannot be easily solved for n equal to a few hundred.  One reason may be that the 

correlation between objective function and each set of constraint coefficients, and the 

correlation between constraint coefficients effects solution procedure performance.  

Many authors developed their randomly generated data set to verify their algorithm, but 

few have actually studied the effects of correlation among the test problem coefficients.   
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Martello and Toth (1988, 1997) devised three classes of correlation to check 

computational performance for knapsack problems: 

Uncorrelated: wj uniformly random in [1, a], 
  pj uniformly random in [1, a], 

 Weakly Correlated:  wj uniformly random in [1, a ], 
  pj uniformly random in [ wj - δ, wj + δ ] 

 Strongly Correlated: wj uniformly random in [1, a], 
  pj = wj + δ 

where pj = profit of item j, and wj = weight of item j given n items, and a and δ are 

prefixed constants ( Martello and Toth, 1997).  These induction strategies have been 

widely used in empirical studies despite the fact that the weakly correlated scheme 

produced coefficients correlated to a value of 0.98. 

Martello and Toth (1988) conducted experiments with their exact algorithm MT2 

solving problems with each correlation level with up to more than 100,000 variables.  

They reported uncorrelated and weakly correlated instances were easily solved.  However 

the strongly correlated instances were very difficult to solve.  They could be solved for 

small number of variables and constraints, using a dynamic programming algorithm that, 

however, would not work on larger instances due to excessive space and time 

requirements.  In short, the results of Martello and Toth for the zero-one knapsack 

problem indicate that problems with nearly perfectly positive correlated processing times 

and weights are significantly harder than the uncorrelated problems.   

Hill and Reilly (2000) measured how the coefficient correlation structure affects 

solution performance using randomly-generated test sets.  For test sets, they controlled 
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these problem generation parameters: correlation measure (Pearson or Spearman), 

correlation structure, and the constraint slackness: 

Let A1∼ U{1, 2, …, 40} be the random variable representing the values of 

coefficients in the first constraint, let A2∼ U{1, 2, …, 15} be the random variable 

representing the values of the coefficient in the second constraint, and let C∼ U{1, 2, …, 

100} be the random variable representing the values of the objective function coefficients 

in 2KP.  The three correlation terms in the correlation structure of 2KP are 1CA
ρ , 2CAρ , 

and 21AA
ρ  with p = ( 1CA

ρ , 2CA
ρ , 21 AAρ ).  A “ slackness” measure for constant i, Si, is 

defined as the ratio of the right-hand side coefficient in constraint i to the sum of the 

coefficients in that constraint.  Two levels of slackness are examined in this study: Si = 

0.30, 0.70, i = 1, 2.  Each of the four possible setting of S1 and S2 is referred to as a 

constraint slackness setting (Hill and Reilly, 2000). 

For their study, they used CPLEX and Toyoda (1975) as solution methods.  Their 

goal was to investigate how problem structure effects solution procedure performance by 

either algorithm (CPLEX) or heuristic (TOYODA).  They measured the number of nodes 

for CPLEX performance and the relative error for the TOYODA performance.  Between 

Pearson and Spearman test problems, Spearman correlation problems were harder.  For 

correlation structure, they found that the difficult problems requiring more nodes have 

larger differences between 1CA
ρ , 2CA

ρ , and 21AA
ρ  in CPLEX.  The negative values of 

21AA
ρ  yields the harder problems for TOYODA.  Interestingly, the challenging problems 

for CPLEX were easy for TOYODA as it found optimal solutions.  For constraint 

slackness, tight constraints provide more challenging problems for both CPLEX and 
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TOYODA.  The interaction between correlation structure and constraint slackness is that 

tighter constraints and constraint coefficients with a wider range of values produce more 

difficult problems.  However, in CPLEX, positive interconstraint correlation usually 

yields more simple problems.  For TOYODA, tight constraints and the negative value of 

21AA
ρ  make problems harder to solve.  Their results indicate that an algorithms’ 

performance depends on the problem “characteristics”.   
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III. Methodology 

3.1  Introduction 

The heuristic methods proposed by Toyoda, Senju-Toyoda (S – T) and Loulou – 

Michaelides (L – M) are examined in this section.  The Test problem characteristics in 

the library section describes the test problems characteristics of those problems solved by 

each heuristic method.  The Approaches to the empirical analysis of algorithms and 

heuristics section discusses general heuristic approaches to the empirical analysis of 

algorithms and heuristics.  The final sections discuss how to analyze comparative data 

and how to compare heuristic performance. 

3.2  Test problem characteristics in the library 

Our objective is to examine heuristic performance as a function of constraint 

tightness and problem correlation structure.  We used the Spearman 2KP problems 

developed and used by Hill and Reilly (2000).  For each problem, the number of 

constraints is 2 (i.e., the 2KP), and the number of variables is 100.  These test problems 

were created using a Spearman rank correlation induction method.  This method creates 

values of trivariate random variables to represent the coefficients (cj, a1j, a2j), and ensure 

the sets of values have the desired correlation structure.  The objective function 

coefficients, cj, are integer numbers uniformly distributed from 1 to 100.  The coefficients 

of the first constraint, a1j, are integer numbers uniformly distributed from 1 to 25 while 

the coefficients of the second constraint, a2j, are integer numbers uniformly distributed 

from 1 to 40.  The three correlation terms are 1CA
ρ , 2CA

ρ , and 21AA
ρ .  The terms 1CA

ρ  and 
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2CA
ρ  represent the correlation between objective function coefficients (cj) and constraint 

coefficients (a1j and a2j).  The term 21AA
ρ  represents the correlation between the two 

constraint coefficients.  The range of correlation levels for each correlation term are set as 

follows:   

ib

1CA
ρ   ∈ { − 0.99997, − 0.49999, 0, 0.49999, 0.99997} 

2CA
ρ   ∈ { − 0.99773, − 0.49887, 0, 0.49887, 0.99773} 

21AA
ρ   ∈ { − 0.99752, − 0.49876, 0, 0.49876, 0.99752} 

Within each set of correlation values, the largest absolute values represent the 

extreme correlation level.  Considering each possible combination of correlation value 

implies 125 combinations.  However, of these 125, only 45 represent positive definite 

correlation matrices.  For correlation structure, the five levels of correlation for each 

correlation term are coded as {−2, −1, 0, 1, 2}. 

For constraint slackness, two different constraint slackness are examined in this 

study.  Slackness number of 1 indicates a slackness of 0.30 and a slackness number of 2 

indicates a slackness of 0.70.  The right-hand side coefficients (bi) are set using the 

relation:  

∑
∈

=
Nj

iji aS  

where S1 = 0.30 and S2 = 0.70. 

Each of the four possible setting of S1 and S2 is referred to as a constraint 

slackness setting (0.30 or 0.70).  We have a total of 1120 problems with 224 
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combinations of 45 feasible correlation structures, four-constraint slackness settings, and 

5 replications each. 

3.3  Approaches to the empirical analysis of algorithms and heuristics  

Barr et al. (1995) outline a general approach for conducting empirical testing of 

heuristics.  We follow the guidelines for the empirical testing of heuristics by Barr et al: 

1. Define the goals of the experiment: 

My goal is to conduct a rigorous computational study to isolate and examine the 

performance of three greedy heuristics, TOYODA, Senju – Toyoda, Loulou – 

Michaelides based on constraint slackness and correlation structure.  The purpose of this 

study is to conduct a computational test, gain insight into how correlation structure and 

constraints slackness affect three different heuristics, and develop a new heuristic based 

on the results.  In other words, which heuristic method yields the best solution under 

certain correlation and slackness conditions and how might we take advantage of this 

knowledge.   

 2. Choose measures of performance and factors to explore: 

A factor is any controllable variable in an experiment that effects the outcome of 

the experiment.  The factors, in this experiment, are the four-constraint slackness 

(combination of tight and loose constraints) levels and 45 feasible correlation structures.   

A measure is the outcome of an experiment.  All three heuristics were coded in 

Visual Basic for Applications within Excel and run against the problems.  Each 

combination of constraint slackness and correlation yields a best heuristic method and by 
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counting the number of times each method is best for various factor combinations, we 

can measure which heuristic is best for each problem strucuture. 

3. Design and execute the experiment: 

As mentioned in Section 3.2, we use the1120 test problem set from Hill and 

Reilly (2000).  These problems represent a full-factorial design in constraint slackness 

and all feasible combinations of the correlation value sets.  

4. Analyze the data and draw conclusions: 

Barr et al. suggested that there were at least three sources of variation one must 

recognize.  These are as follows: (1) variation among algorithm performance, (2) 

variation due to problem parameters and (3) variation within problems.  Based on Hill 

and Reilly (2000), (3) is negligible.  We therefore focus on (1) and (2) with emphasis on 

(1) since we hope to gain insight into why certain heuristics do well or not so well on 

certain problems. 

3.4  Computer coding of three heuristic methods 

In order to eliminate the possible influences caused by any type of restriction, 

each constraint is normalized by dividing all constraint row coefficients (aij) by its right-

hand side coefficient (bi), yielding a problem with each bi = 1. 

For TOYODA’s heuristic, we coded the original primal effective gradient 

method.  Toyoda (1975) included origin – moving in his primal effective gradient 

method, but we did not use this.  Let Fij be the normalized constraint coefficients (aij).  

When cumulative quantity vector is a zero vector such as in the first iteration, the 
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gradient for each variable is calculated as 
)(

2

21 jj

j
j FF

c
+
⋅

=G .  Let Pj be a vector of (F1j, F2j 

).  For most iterations, the effective gradient is 
uj

uj
j PP

Pc
⋅
⋅

=G , where Pu is cumulative total 

quantity vector, i.e., the vector of used resources.  Variables are added according to best 

effective gradient until the constraint resources are fully used. 

For S – T heuristic, we coded the improved method suggested by the authors.  

The improved method also normalizes constraint coefficients.  The following vectors are 

introduced: Ai = vector of constraint coefficients which is normalized, Ai = (ai1, ai2). R is 

the sum vector of Ai.  B is the vector of right – hand side values.  Since RHS is 

normalized, B = (1, 1).  S is slackness vector.  The following vector equations hold: 

10021 AAAR +⋅⋅⋅++=  

BRS −=  

The gradient is calculated as: 
SP

c

j

j
j ⋅
=G .  Then, since S – T is a dual approach, S 

– T drops variables according to best effective gradient until feasibility is achieved. 

As mentioned in section 2.3.2, for the L – M heuristic, Loulou and Michaelides 

(1979) suggested four different methods to find the penalty vectors.  We use method M1 

to define the penalty vector.  That is:  

∑ ∈= −−−+=
SCk ijiijikijiij aDAaaaDAMaxV )}1/())({(100,...,1    

where DAi is an amount of resource consumed so far. 
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Notice L – M heuristic picks the worst penalty cost (Vj) between two constraints.  

The effective gradient is calculated as: 
j

j
j V

c
G = .  L – M adds variables according to the 

effective gradient until constraints are met. 

All three heuristic codes are available in Appendix A, B and C, respectively.  

Some representative results are shown on Table 1.  All problems were successfully 

solved. 

Table 1.  Results by Three Heuristics Solutions over 1120 problems 

Prob 
Num 

Rep 
Num 

C1 
Slack 

C2 
Slack CA1 CA2 A1A2 IP TOYODA S-T L-M 

1 1 1 1 2 2 2 1480 1468 1468 1468 
2 2 1 1 2 2 2 1644 1631 1614 1584 
3 3 1 1 2 2 2 1497 1454 1454 1441 
4 4 1 1 2 2 2 1704 1694 1696 1603 
5 5 1 1 2 2 2 1619 1597 1597 1549 
6 1 1 2 2 2 2 1647 1626 1635 1611 
7 2 1 2 2 2 2 1787 1772 1770 1594 
8 3 1 2 2 2 2 1590 1586 1585 1552 
9 4 1 2 2 2 2 1629 1627 1628 1461 
10 5 1 2 2 2 2 1669 1663 1665 1574 
11 1 2 1 2 2 2 1732 1722 1725 1647 
:           
:           

1117 2 2 2 2 -2 -2 3574 3540 3535 3537 
1118 3 2 2 2 -2 -2 3683 3623 3620 3640 
1119 4 2 2 2 -2 -2 3812 3544 3435 3532 
1120 5 2 2 2 -2 -2 3696 3648 3631 3646 

Prob Num = Problem Number 
 Rep Num = number of replications 
  C1 Slack = slackness of first constraint  ( 1 = 0.3, 2 = 0.7)  
  C2 Slack = slackness of second constraint (1 = 0.3, 2 = 0.7) 
         CA1 = correlation between cj and a1j  

       ( −2 = −0.99997, −1 = −0.49999, 0 = 0, 1 = 0.49999, 2 = 0.99997 ) 
         CA2 = correlation between cj and a2j  

       ( −2 = −0.99773, −1  = −0.49887, 0 = 0, 1 = 0.49887, 2 = 0.99773 ) 
        A1A2 = correlation between a1j and a2j  

       ( −2 = −0.99752, −1 = −0.49876, 0 = 0, 1 = 0.49876, 2 = 0.99752 ) 
IP = Integer optimal solution (or best known) 

 TOYODA = solution by Toyoda’s heuristic 
          S-T = solution by Senju – Toyoda’s heuristic 
          L-M = solution by Loulou – Michaelides’ heuristic 

23 



 

3.5  Analysis of Results 

3.5.1  Relative Error 

The ultimate goal of a heuristic is to find an optimal solution.  Short of this, the 

heuristic should come near the optimal.  Since we know the true optimum or best known 

solution for each test problem, we can use the relative error measure, that is, the smallest 

relative error provides the closet solution to the optimum.  Let Zi be the value of objective 

function obtained by heuristic i where i = Toyoda, S-T or L-M and Z* be the optimal or 

best known solution.  Then the relative error: 

** /)(100 ZZZRE ii −⋅=  

Based on the relative error, we choose the best method excluding ties under 

certain correlation and constraint slackness.  Since our goal is to know why certain 

correlation and constraint slackness levels make specific methods perform well (i.e., the 

smallest relative error), we count the number of times a heuristic is the best, excluding 

the number of ties, by correlation structure and constraint slackness settings.  This is 

shown Table 2. 

Table 2.  Relative Error of Three Heuristics 

Problem No. TOYODA S – T L – M Best Method
1 0.810811 0.810811 0.810811 Tie 
2 0.790754 1.824818 3.649635 TOYODA 
3 2.872411 2.872411 3.740815 Tie 
4 0.586854 0.469484 5.92723 S – T 
5 1.358863 1.358863 4.323657 Tie 
6 1.275046 0.728597 2.185792 S – T 
7 0.839396 0.951315 10.80022 TOYODA 
8 0.251572 0.314465 2.389937 TOYODA 
:     
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3.5.2  Chi-square test 

We wish to know whether or not there is a best method among the three heuristics 

over each correlation and constraint slackness.  We use a Chi-square (χ2) test to 

determine whether or not any heuristic method is significantly better than the other 

methods. 

H0 : Methods do not differ. 

H1 : At least 2 methods differ. 

To compute the chi-square test, first divide the entire range of the fitted 

distribution into 3 equal intervals [a0, a1), [a1, a2), [a2, a3) where [a0 a1) represents 

Toyoda’s heuristic, [a1, a2) represents Senju-Toyoda’s heuristic, and [a2, a3) represents 

Loulou – Michaelides’s heuristic.  Then we have 

Nj = number of times best in the interval [aj-1, aj), for j =1 , 2, 3 

   (Note that 1 = Toyoda,  2 = S – T, 3 = L – M heuristic) 

Next, we compute the expected proportion, pj, of the Nj’s that should fall in the jth 

interval.  Since, under H0 we assume that there is no difference in the three methods, we 

can define pj= 1/3.  Finally, the test statistic is  

∑
=

−
=

3

1

2
2 )(

j j

jj

np
npN

χ  

Since npj is the expected number of times the best j heuristic occurs, if H0 is true, 

we would expect χ2 to be small if the fit were good.  We reject H0 if χ2 is too large.  For 

this test, α = 0.1 is used, so the critical value is χ2
0.01,d.f.. 
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3.5.3  Sign test for paired samples 

We use a sign test to determine whether or not one heuristic outperforms another.  

For a sign test, the hypothesis is as follows: 

H0: two heuristics are identically distributed. 

H1: two heuristics are statistically different. 

If H0 is true, then for any test problem either heuristic has an equal chance of 

being the best.  Therefore, the distribution of outcomes has the Binomial distribution B(n, 

0.5).  Let U be the number of times the first heuristic is best.  If H0 is true, then U ~ B(N, 

0.5) and is approximated by a normal distribution having mean  2
1×= Nµ  and standard 

deviation 2
1

2
1 ××= Nσ .  To find the significance level of the result, we calculate : 








 −−
>=−>≈≥

σ
µ5.0)5.0()( UZPUXPUXP  

Since this is a two-tailed test, and the normal distribution is symmetric, we use an 

absolute value on the critical value.  We use α = 0.05 level of significance to decide 

whether to fail to reject H0 or reject H0. 

3.6  New heuristic 

3.6.1  New Combined Heuristic 

We will study which heuristic has the best solution under various conditions, such 

as different constraint slackness settings, correlation structures or a combination of both.  

In other words, which heuristic under what conditions becomes statistically the best 

heuristic.  We use the condition which made one of the three heuristics the best heuristic 

for a new combined heuristic.  That is, we first investigate the characteristics of a 
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problem as to whether it is dominated by constraint slackness, correlation structures, or a 

combination of both.  Then, we choose a heuristic that is likely to produce the closest 

solution to the best-known solutions among the three heuristics, TOYODA, S – T, and    

L – M.   

3.6.2  Cho Heuristic 

After studying why the best heuristic works well and why the poorer heuristic 

does not work well in Chapter IV, we combine the merits of the three heuristics into one, 

new heuristic.  Since three heuristics use different penalty factors as well as feasibility, 

for example, TOYODA and L – M start from an empty solution and maintain feasibility 

while S – T starts from an infeasibility region, we may predict that some other factors are 

influential in creating a better solution.  Therefore, we develop a new heuristic that 

includes the favorable influential factors.    
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IV. Analysis of Legacy Heuristics 

This chapter presents the results of an empirical study of the Senju – Toyoda 

(1968), Toyoda (1975), and Loulou – Michaelides (1979) heuristics as applied to the 2KP 

test problem set of Hill and Reilly (2000).  The purpose of this study was to gain insight 

into heuristic performance to build new heuristics for MKPs. 

4.1  Constraints slackness 

The Results section deals with the performance of three heuristics over four 

different combinations of constraint slackness (tight, loose).  Most of the analysis results 

present data as counts of best performer (excluding ties) among the three heuristics.  

Graphics are validated using non-parametric statistical test. 

4.1.1  Results 

The overall performance of the three heuristics is summarized in Table 3 and 

Figure 1.  The data reflect the various combinations of constraint slackness coded as:  

1 = 0.3 and 2 = 0.7.   

0
20
40
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100
120
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180
200

1,1 1,2 2,1 2,2

TOYODA

L - M

 

S - T

Figure 1.  Counts of best of three heuristic methods under constraint slackness 
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Toyoda has long been the benchmark greedy heuristic for MKP problems.  These 

results, however, suggest that S – T might be better in some cases and L – M better in 

other cases.  The counts provided in Table 3 appear convincing; there is a difference in 

heuristic performance. 

Table 3.  The number of times best by each heuristic under constraint slackness 

Method Constraint 
Slackness Toyoda S - T L - M 

1,1 87 15 123 

1,2 22 186 15 

2,1 24 184 13 

2,2 41 17 147 

 

If there were no differences in performance of these heuristics, we would expect 

each row in Table 3 to have fairly equal counts.  A chi-square test of  

H0: All heuristics equal 

H1: Heuristics differ 

is summarized in Table 4.  These results confirm the intuition from Table 3; for each 

slackness setting there is a preferred heuristic.  The following sections examine each 

slackness setting in detail. 

Table 4.  Chi-square test for constraint slackness 

Constraint 
Slackness X2 df Probability Reject Region 

(α = 0.1) 
1,1 80.64 2 3.08E-18 Reject H0 
1,2 251.9552 2 1.94E-55 Reject H0 
2,1 248.6968 2 9.91E-55 Reject H0 
2,2 140.0585 2 3.86E-31 Reject H0 
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4.1.2  Analysis of constraint slackness of S1 = 0.3 and S2 = 0.3 (1,1) 

Table 3 and Figure 1 indicate that TOYODA and L – M yield better solutions 

than S – T when constraints are tight.  The question is whether TOYODA and L- M 

differ.  A sign – test is used to examine this question.  Table 5 summarized the sign test 

indicating there is no difference between TOYODA and L – M for (S1, S2) = (0.3, 0.3) 

problems.   

Table 5.  Sign test, TOYODA vs. L – M under S1 = 0.3 and S2 = 0.3 

No. of Non-Ties No. of Ties TOYODA Better L – M Better 
272 8 168 124 
H0 Two heuristics are identically distributed. 

Normal 
Approximation 

B(272, 0.5) 

08157.0)
2462.8

1365.147()148( =
−

>≈≥ ZPXP  

Since this is a two-tailed test, the value U = 168 would be 
significant at a level of 0.1631 

Rejection Region 
(α= 0.05) Fail to reject H0 

 

The challenge is understanding why TOYODA (and L – M) beats S – T for these 

problems.  Toyoda’s heuristic is a primal effective method.  The penalty function creates 

a single effective gradient number based on two limited resources.  The penalty cost was 

introduced as follows: 

u

ui
i P

PPU )( ⋅
=  

where Pi is the vector (a1i, a2i) and Pu is a cumulative total resource used vector.  Recall 

a1i and a2i are normalized coefficients in each constraint, i.e., 
j

ij
ij b

F
a =  where Fij is the 

original coefficient in constraints.  Therefore, Ui depends on the direction of Pu and has 
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no relationship to its magnitude.  To pick the next new variable to add among non-

selected variables, TOYODA calculates an effective gradient 







=

i

j
i U

c
G .  However, for 

Senju –Toyoda’s heuristic, the penalty is as follows: 

S
SP

U j
j

)( ⋅
=  

where Pi is the vector (a1i, a2i),  S is a slack variable vector, and a1i and a2i are equivalent 

to each normalized constraint multiplied by 100, i.e., 100×=
j

ij
ij b

F
a .  Let R be the vector 

of resource costs for constraint j, such as ( ){ }2,1: , === iasum ijRRR jj .  Thus S = R – 

100.   

The reason why TOYODA and L – M yield better solutions is caused by Pu.  

When the value S is chosen, S does not change at all in Senju-Toyoda’s method, while Pu 

varies at each iteration in Toyoda’s heuristic.  Although S always provides a direction 

into the feasible region, S is not effective because it gives constraints equal weight and 

goes too deep into the feasible region.  This causes more resources to remain.  However, 

the TOYODA heuristic evaluates Pu at each iteration after selecting a new variable.  This 

means there are less remaining resources at each constraint.  Thus, Toyoda selects more 

variables because it uses constraint resources effectively.  The Loulou−Michaelides 

heuristic, an extension of Toyoda’s yields similar results. 

4.1.3  Analysis of mixed slackness, S1 ≠ S2, (1,2) or (2,1) 

Recall from Figure 1 the overwhelming advantage of S – T when slackness levels 

are mixed.  Since we normalized constraint coefficients, the coefficients, aij, represent a 
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percentage of the right-hand side resource.  Senju and Toyoda (1968) even suggest that 

better solutions may be obtained when the right-hand side values differ greatly.   

To understand why S – T performs well, consider problems when a (S1, S2) = 

(0.3, 0.7).  Since the first constraint is tight and the second constraint is loose, and S is 

slack variable vector (s1, s2), s1 should be larger than s2.   

Figure 2, adapted form Senju and Toyoda (1968), depicts the S – T heuristic 

approach.  Let the axes represents resource average within each constraint so L1 and L2 

represent right – hand side values for each constraint.  The point R represents the 

resource usage of the initial, infeasible, point used in the S – T heuristic.  The S – T 

heuristic drops variables to force the point R into the feasible region, ideally along vector 

S. 
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Figure 2.  Effective length of withdrawal 
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The slope of S is almost horizontal with respect to first constraint axis, as shown 

in Figure 2.  This means favoring the first constraint over the second constraint, which in 

the current case is the tight constraint.  It is preferable to drop variables whose 

coefficients are smaller compared to their projected length on the vector S, thus favoring 

feasibility with respect to the tight constraint.   

The direction of slack variable vector, S, provides the proper direction into 

feasible region.  In other words, as S – T reaches the point of feasible region (L), it is 

using the resources of the two constraint most effectively.  In contrast to the S – T dual 

method, the TOYODA and L – M primal methods pick variables to equalize resource 

usage.  This approach does not provide enough emphasis towards the problem’s binding 

(tighter) constraint.  Therefore, while S – T in problems with tight constraints uses 

constraint resources similarly compared with TOYODA and L – M; however, with mixed 

constraint slackness, S – T is more effective.  More effective use of the binding constraint 

translates into extra resources and thus more projects selected yielding better solutions. 
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Figure 3.  Performance of 3 heuristic methods in terms of best constraint resource use 
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The data was examined to determine which heuristic makes best use of each 

constraint i.e., leaves the least amount of slack in a constraint.  Table 6 provides data 

pertaining to test problem resource usage; Figure 3 is a graph of the same data, when (S1, 

S2) = (0.3, 0.7).  Table 7 and Figure 4 provide similar data for (S1, S2) = (0.7, 0.3).  The 

improved direction of S – T focused on the binding constraint means more effective use 

of the loose constraint resource.  As the data shows, constraint usage is nearly equal on 

the binding constraint but significantly better on the loose constraint for S – T.  This 

equates to more variables set to one under S – T which in turn helps explain S – T’s 

significantly better performance in terms of solution value over TOYODA and L – M. 

Table 6.  The number of times least slack remained in each constraint (Excluding ties) 

 TOYODA S – T L – M 
Tight Constraint 

(S1 = 0.3)  110 68 77 

Loose Constraint 
(S2 = 0.7) 25 186 62 
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Figure 4.  Performance of 3 heuristic methods in terms of best constraint resource use 
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Table 7.  The number of times least slack remained in each constraint (Excluding ties) 

 TOYODA S – T L – M 
Loose Constraint 

(S1 = 0.7)  24 183 68 

Tight Constraint 
(S2 = 0.3) 87 73 70 

 
 

4.1.4  Analysis of constraint slackness of S1 = 0.7 and S2 = 0.7 (2,2) 

In cases where both constraints are loose, TOYODA and L – M heuristics give 

better results than S – T.  TOYODA and L – M use a similar penalty factor (Vj); 

furthermore, both are primal effective gradient methods because L – M is extended from 

TOYODA.  A sign test, summarized in Table 8, shows L – M is statistically better than 

TOYODA on these problems. 

Table 8.  Sign test, TOYODA vs. L – M under S1 = 0.7 and S2 = 0.7 

No. of Non-Ties No. of Ties TOYODA Better L – M Better 
266 14 113 153 
H0 Two heuristics are identically distributed. 

Normal 
Approximation 

B(266, 0.5) 

005971.0)
1548.8

1335.112()113( =
−

>≈≥ ZPXP  

Since this is a two-tailed test, the value U = 113 would be 
significant at a level of 0.0119 

Rejection Region 
(α= 0.05) Reject H0 

 
 

As described earlier, the slack vector (S) of the S – T heuristic does not provide an 

effective direction into the feasible region when the constraint slackness level is (2, 2).  

The dual direction of S yields a solution deep in the feasible region, causing more 

resources to remain.  The second phase of S – T cannot then effectively return projects to 

the solution.  However, TOYODA and L – M newly calculate the amount of remaining 
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resource to select new variables at every iteration.  At the end, less resources in the 

constraints remain as compared to S - T.  The reason for better solution of L – M under 

the circumstance of S1 = 0.7 and S2 = 0.7 results from its penalty factor.  The penalty 

factor used is as follows: 

∑ ∈= −−−+=
SCk ijiijikijiij aDAaaaDAMaxV )}1/())({(100,...,1  

As we mentioned in Chapter III, when calculating the effective gradient, L – M 

always picks the higher value from the penalty cost between the first and second 

constraint.  Thus, choosing a higher value of penalty cost would imply that L – M 

considers only the worst constraint from a penalty cost perspective. 

4.1.5  Implication 

The form of the effective gradient, used to either add or drop variables, is 

sensitive to the type of problem.  In the current setting, S – T is better when slackness 

levels differ; TOYODA and L – M are better when both constraints are tight, and L – M 

is the best when both constraints are loose.  This suggests analyzing problem 

characteristics before selecting a heuristic; a point made by Loulou and Michaelides 

(1979) and Hooker (1994). 

4.2  Correlation 

There are 45 feasible correlation structures in the test set.  This section analyzes 

the three heuristics with respect to correlation between objective function and constraint 

coefficients, as well as correlation between constraint coefficients.   
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4.2.1  Results 

Table 9 presents counts of how many times each heuristic yields the best solution 

(excluding ties) by problem correlation structure listed in coded form.  Each correlation 

structure contains 20 to 40 samples (5 replications over 4 slackness settings).  Figures 5 

through 9 summarize the Table 9 data graphically for various “slices” of the data; each 

focuses on a different level of CAρ . 

Table 9.  The number of times best by each heuristic under correlation 

Methods 
Correlation 

Toyoda S - T L - M 
2,2,2 5 9 1 
2,1,1 7 6 5 
2,0,0 5 3 6 

2,-1,-1 8 5 4 
2,-2,-2 8 3 5 
1,2,1 3 9 7 
1,1,2 1 4 0 
1,1,1 7 21 0 
1,1,0 3 12 0 
1,0,1 8 8 2 
1,0,0 9 19 11 
1,0,-1 3 10 7 
1,-1,0 1 8 9 
1,-1,-1 1 18 20 
1,-1,-2 2 9 9 
1,-2,-1 5 6 5 
0,2,0 3 4 9 
0,0,2 3 5 1 
0,1,1 3 5 5 
0,1,0 3 19 17 
0,1,-1 2 10 7 
0,0,1 9 16 1 
0,0,0 6 20 2 
0,-1,0 2 12 20 
0,0,-1 6 22 3 
0,-1,1 5 3 3 
0,-1,-1 1 10 8 
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Methods 
Correlation 

Toyoda S - T L - M 
0,0,-2 1 11 2 
0,-2,0 1 3 10 
-1,2,-1 12 3 3 
-1,1,0 4 6 9 
-1,1,-1 2 17 19 
-1,1,-2 1 9 10 
-1,0,1 3 10 3 
-1,0,0 1 21 17 
-1,0,-1 1 8 8 
-1,-1,2 1 0 3 
-1,-1,1 6 10 9 
-1,-1,0 2 8 4 
-1,-2,1 0 2 7 
-2,2,-2 9 4 6 
-2,1,-1 6 5 4 
-2,0,0 3 5 9 
-2,-1,1 2 3 7 
-2,-2,2 0 1 0 
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Figure 5.  Performance of the three heuristic methods when 1CA
ρ = 2 (1) 
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Figure 6.  Performance of the three heuristic methods when 1CA
ρ = 1 (2) 
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Figure 7.  Performance of the three heuristic methods when 1CA
ρ = 0 (3) 
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Figure 8.  Performance of the three heuristic methods when 1CA
ρ = -1 (4) 
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Figure 9.  Performance of the three heuristic methods when 1CA
ρ = -2 (5) 
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4.2.2  Chi – square test 

Table 10 summarizes the results of a Chi – Square test on each correlation 

structure, and for those that have it, a best performing heuristic.  Clearly S – T does very 

well compared to TOYODA or L – M.  

Table 10.  Chi-square test for correlations 

Correlation X2 df Probability Reject (α = 0.1) Best 
2,2,2 6.4 2 0.040762 Reject H0 S – T 
2,1,1 0.333333 2 0.846482   
2,0,0 1 2 0.606531   

2,-1,-1 1.529412 2 0.465471   
2,-2,-2 2.375 2 0.304983   
1,2,1 2.947368 2 0.22908   
1,1,2 5.2 2 0.074274 Reject H0 S – T 
1,1,1 24.5 2 4.79E-06 Reject H0 S – T 
1,1,0 15.6 2 0.00041 Reject H0 S – T 
1,0,1 4 2 0.135335   
1,0,0 4.307692 2 0.116037   
1,0,-1 3.7 2 0.157237   
1,-1,0 6.333333 2 0.042144 Reject H0 S – T, L – M 
1,-1,-1 16.76923 2 0.000228 Reject H0 S – T, L – M 
1,-1,-2 4.9 2 0.086294 Reject H0 S – T, L – M 
1,-2,-1 0.125 2 0.939413   
0,2,0 3.875 2 0.144064   
0,0,2 2.666667 2 0.263597   
0,1,1 0.615385 2 0.735141   
0,1,0 11.69231 2 0.002891 Reject H0 S – T, L – M 
0,1,-1 5.157895 2 0.075854 Reject H0 S – T, L – M 
0,0,1 13 2 0.001503 Reject H0 S – T 
0,0,0 19.14286 2 6.97E-05 Reject H0 S – T 
0,-1,0 14.35294 2 0.000764 Reject H0 L – M 
0,0,-1 20.19355 2 4.12E-05 Reject H0 S – T 
0,-1,1 0.727273 2 0.695144   
0,-1,-1 7.052632 2 0.029413 Reject H0 S – T, L – M 
0,0,-2 13 2 0.001503 Reject H0 S – T 
0,-2,0 9.571429 2 0.008348 Reject H0 L – M 
-1,2,-1 9 2 0.011109 Reject H0 TOYODA 
-1,1,0 2 2 0.367879   
-1,1,-1 13.63158 2 0.001096 Reject H0 S – T, L – M 
-1,1,-2 7.3 2 0.025991 Reject H0 S – T, L – M 
-1,0,1 6.125 2 0.046771 Reject H0 S – T 
-1,0,0 17.23077 2 0.000181 Reject H0 S – T, L – M 
-1,0,-1 5.764706 2 0.056003 Reject H0 S – T, L – M 
-1,-1,2 3.5 2 0.173774   
-1,-1,1 1.04 2 0.594521   
-1,-1,0 4 2 0.135335   
-1,-2,1 8.666667 2 0.013124 Reject H0 L – M 
-2,2,-2 2 2 0.367879   
-2,1,-1 0.4 2 0.818731   
-2,0,0 3.294118 2 0.192616   
-2,-1,1 3.5 2 0.173774   
-2,-2,2 2 2 0.367879   

 
H0 : The observed values do not differ significantly from their expected value. 
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We next explore why a heuristic is better under some correlation structures, and 

what makes heuristics perform well in general.   

4.2.3  Analysis of 1CA
ρ  = − 0.99997, 2CA

ρ  = − 0.99773, and 21AA
ρ  = 0.99752 (-2, -2, 2) 

There are specific combinations of negative correlation between objective 

function coefficients and constraints coefficients, and positive correlation between 

constraint coefficients that provides the best condition for a heuristic.  In constructive 

approaches such as the TOYODA and L – M heuristics, variables with the highest value 

of the effective gradient ratio 
j

j
V

c  are selected, i.e., largest profit per unit resource 

consumed.  For a large effective gradient, cj should be relatively large and Vj should be 

relatively small with 1CA
ρ  = − 0.99997, 2CA

ρ  = − 0.99773, both constraints consume 

relatively less resources while profit is relatively large.  Conversely, when profit is small, 

resource consumption will be large.  Since the value of 21AA
ρ  is close to one, a1j and a2j 

have similar relationships in the problems.  This makes the problems easy for heuristics 

to find best results.  TOYODA and L – M found 17 optimal solutions and S – T found 19 

optimal solutions out of the 20 test problems as shown below in Table 11.  Similarly, 

conditions of weaker negative correlation between objective function coefficients and 

both constraints’ coefficients, and stronger positive constraint coefficient correlation (-1, 

Table 11.  Number of times optimum found by each heuristic under correlation structure    
-2, -2, 2 

Correlation TOYODA S – T L – M 
-2, -2, 2 17 19 17 
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-1, 2) also give good conditions for each heuristic.  Under these conditions, the choice of 

heuristics does not matter since all do well. 

4.2.4  Analysis of Toyoda’s heuristic 
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Figure 10.  Better Performance of TOYODA method under various correlations 

As shown in Figure 10 above, the TOYODA heuristic has better performance 

when 1CA
ρ  and 2CA

ρ  have opposite sign of correlation and 21AA
ρ  has negative correlation; 

for example 1CA
ρ = – 1, 2CA

ρ  = 2, and 21AA
ρ = – 1.  In other words, if the profit is large, 

the first constraint coefficient is relatively larger and the second constraint coefficient is 

relatively smaller.  The TOYODA heuristic always picks the highest effective gradient.  

As mentioned earlier, to have a higher and effective gradient, relative profit should be 

large and penalty cost should be small.  When constraint slackness is tight and tight or 

loose and loose Pu increases in almost same value at each iteration, since Pu consist of  

value  and of selected variables.  Since the penalty cost is P∑
∈Selectedi

i1a ∑
Selected∈i

ia2 u, multiplying 

by Pi:
u

i

P
P ⋅ uP )

i =U , for small penalty cost, relatively small values of a(
1i plus a2i are 
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picked.  Therefore, the correlations have opposite signs and one value is larger than the 

other making the sum become a relatively small number.  This means choosing the least 

resource consuming variable, meaning more variables can be selected which in turn 

results in better objective function value. 

4.2.5  Analysis of Senju-Toyoda’s heuristic 

0

5

10

15

20

25

0,0,2 0,0,1 0,0,0 0,0,-1 0,0,-2

TOYODA

L - M

 

S - T

S - T

Figure 11.  Better Performance of S – T method under various 21AA
ρ  correlations (1) 
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Figure 12.  Better Performance of S – T method under various correlations (2) 
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When the 1CA
ρ  and 2CA

ρ are near zero or mid – range, S – T appears to dominate.  

However, for each of the correlation level in Figure 11 and Figure 12 (exception is 2,2,2), 

40 test problems were solved.  This doubling of test problems over the other 34 

correlation levels was an artifact of the Hill and Reilly (2000) experimental design.  

When independence or low correlation levels exist between constraint coefficients and 

objective function coefficients, the striking difference is caused by the S – T method’s 

better performance on mixed constraint slackness settings; half of all problems are mixed 

constraints, so S – T should have better results when there are no dominant correlations. 

4.2.6  Analysis of Loulou – Michaelides’ heuristic 
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Figure 13.  Better Performance of L - M method under various correlations 

L – M has a tendency to have a better performance when any one constraint has 

strongly negative correlation ( 1CA
ρ  = − 0.99997  or 2CA

ρ  = − 0.99773) with the objective 

function.  As previously described, the best condition for a heuristic is strong negative 

correlation between objective function coefficients and both constraints’ coefficients and 
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strong positive correlation between constraint coefficients.  L – M heuristic always picks 

a penalty factor based on the worst-case constraint, i.e., it consumes more resources.  

Thus, inter – constraint correlation does not affect heuristic performance because L – M 

only considers one constraint.  As shown above in Figure 13, L – M has the best 

performance on any combination with strong negative correlation between objective 

function coefficients and coefficients of one of the constraints.  However, even though 

one of constraints has strongly negative correlation with profits, TOYODA has better 

results when two constraints have the opposite sign of correlation such as negative 

correlation and positive correlation with profits.   

4.2.7  Implication 

When correlation structure has strongly negative correlation between profits and 

constraint coefficients, primal effective methods perform better than dual methods.  

Especially, when opposite signs of correlation exist, TOYODA’s performance is 

distinguishable.  Since L – M is not affected by correlation of inter-constraints, L – M has 

better solutions when any one constraint has strongly negative correlation with profits.  

Except in the above condition, S – T yields more solutions close to the optimum.
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V. New Heuristic Comparison 

5.1  Introduction 

The previous chapter examined heuristic performance as a function of problem 

characteristics; in particular, when is a heuristic the best choice for a problem?  In this 

chapter, a New Combined Heuristic examines problem structure and runs a “best” 

heuristic based on the combination of constraint slackness and correlation structure used 

in Chapter IV.  The section, New Developed Heuristic, provides a new heuristic where 

parameters have been changed based on the analysis in Chapter IV.  

5.2  New Combined Heuristic 

Hooker (1994) as well as Loulou and Michaelides (1979) suggest basing heuristic 

choice on computed problem characteristics.  In Chapter IV, the best heuristic among 

three different heuristics, TOYODA, S – T, and L – M, was determined based on 

constraint slackness and correlation structure.  When both constraints are tight, 

TOYODA and L – M, primal effective methods, are best.  When constraint slackness is 

mixed, S – T heuristic is best.  Finally, the performance of L – M is the best when both 

constraints are loose.  Table 12 summarizes the results. 

For correlation structures, TOYODA had the better performance when the sign of 

correlation of objective function coefficients and constraint coefficients is opposite, for 

example (2, –1, –1).  L – M was better when any one constraint has strongly negative 

correlation with objective function coefficients.  Table 13 summarizes the results. 
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Finally, a special combination between constraint slackness and correlation 

structure dominates the specific best heuristic.  For example, when correlation is (–2, 1,    

–1), TOYODA is the best heuristic.  However, when this correlation is combined with 

constraint slackness (2, 2), L – M is the best heuristic.  The 20 combinations between 

correlation structure and constraint slackness, which dominate the specific method as the 

best heuristic, were found and are summarized in Table 14. 

Our typology was coded and run against the problem set.  This new combined 

heuristic code is available in Appendix D.   

Table 12.  Dominant Constraint Slackness and the Best Heuristic 

 
Heuristic Constraint Slackness 1 Constraint Slackness 2 

L – M Tight Tight 
S – T Tight Loose 
S – T Loose Tight 
L – M Loose Loose 

 

Table 13.  Dominant Correlation Structures and the Best Heuristic 

Heuristic CA1 CA2 A1A2 
TOYODA 2 -1 -1 
TOYODA 2 -2 -2 
TOYODA 1 1 2 
TOYODA -1 2 -1 
TOYODA -2 2 -2 
TOYODA -2 1 -1 

S – T 0 0 2 
S – T 0 0 1 
S – T 0 0 0 
S – T 0 0 -1 
S – T 0 0 -2 
L – M 0 -2 0 
L – M -1 -2 1 
L – M -2 0 0 
L – M -2 -1 1 
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Table 14.  Dominant Combination between Constraint Slackness and Correlation 
Structure, and the Best Heuristic 

Heuristic Slackness1 Slackness2 CA1 CA2 A1A2 
TOYODA 1 1 2 2 2 
TOYODA 1 1 2 1 1 
TOYODA 1 1 1 1 1 
TOYODA 1 1 1 1 0 
TOYODA 1 1 1 0 1 
TOYODA 1 1 1 0 0 
TOYODA 1 1 1 -2 -1 
TOYODA 1 1 -1 -1 2 
TOYODA 2 2 1 1 1 
TOYODA 2 2 1 1 0 
TOYODA 2 2 0 0 1 
TOYODA 2 2 0 -1 1 

S – T 1 2 0 -2 0 
S – T 1 2 -1 -2 1 
S – T 2 1 -2 0 0 
S – T 2 1 -2 -1 1 
S – T 2 2 -1 0 1 
L – M 1 2 -2 2 -2 
L – M 1 2 -2 1 -1 
L – M 2 2 -2 1 -1 

 

 

5.2.1  Results under Constraint Slackness 

The performance of the new combined heuristic is summarized in Table 15 and 

Figure 14.  Table 15 and Figure 14 show that the new combined heuristic has slightly 

better performance than the prior best heuristic under various constraint slackness levels 

and has, overall, more consistent performance.  Since the new combined heuristic runs 

the best heuristic under certain dominant constraint slackness levels and correlation 

structures, the new combined heuristic in Table 15 shows the number counted when the 

prior best heuristic and the new combined heuristic have the same value.   
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Figure 14.  Performance of new combined method under various constraint slackness 

Table 15.  The number of times best by each heuristic under constraint slackness 

Method Constraint 
Slackness Toyoda S - T L - M New 

Combined 

1,1 87 15 123 164 

1,2 22 186 15 188 

2,1 24 184 13 182 

2,2 41 17 147 157 

 
 
5.2.2  Results under Correlation Structure 
 

The new approach does particularly well over correlation structure.  When we 

count the number of same solution values of best heuristic and the new combined 

heuristic, the new combined heuristic performed better than the previous best heuristic.  

Among 45 feasible correlation structures, the new combined heuristic is best in 33 
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correlation structures.  Figures 15 through 19 plot the data similar to Figures 5 through 9.  

The key trend to note is the consistent levels of performance by the combined heuristic. 
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Figure 15.  Performance of new combined heuristic when 1CA
ρ = 2 (1) 
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Figure 16.  Performance of new combined heuristic when 1CA

ρ = 1 (2) 
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Figure 17.  Performance of new combined heuristic when 1CA
ρ = 0 (3) 
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Figure 18.  Performance of new combined heuristic when 1CA

ρ = -1 (4) 
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Figure 19.  Performance of new combined heuristic when 1CA

ρ = -2 (5) 
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Table 16 breaks the performance numbers out by each of the 45 correlation 

structures in the test problem set.  Clearly, the combined heuristic does well. 

Table 16.  The number of times best by the new combined heuristics under correlation 
structure 

Heuristics 
Correlation 

Toyoda S - T L - M New Combined 
2,2,2 5 9 1 8 
2,1,1 7 6 5 14 
2,0,0 5 3 6 8 

2,-1,-1 8 5 4 8 
2,-2,-2 8 3 5 8 
1,2,1 3 9 7 16 
1,1,2 1 4 0 1 
1,1,1 7 21 0 24 
1,1,0 3 12 0 13 
1,0,1 8 8 2 14 
1,0,0 9 19 11 32 
1,0,-1 3 10 7 17 
1,-1,0 1 8 9 17 
1,-1,-1 1 18 20 37 
1,-1,-2 2 9 9 18 
1,-2,-1 5 6 5 14 
0,2,0 3 4 9 12 
0,0,2 3 5 1 5 
0,1,1 3 5 5 10 
0,1,0 3 19 17 36 
0,1,-1 2 10 7 17 
0,0,1 9 16 1 20 
0,0,0 6 20 2 20 
0,-1,0 2 12 20 30 
0,0,-1 6 22 3 22 
0,-1,1 5 3 3 5 
0,-1,-1 1 10 8 16 
0,0,-2 1 11 2 11 
0,-2,0 1 3 10 13 
-1,2,-1 12 3 3 12 
-1,1,0 4 6 9 13 
-1,1,-1 2 17 19 36 
-1,1,-2 1 9 10 19 
-1,0,1 3 10 3 12 
-1,0,0 1 21 17 35 
-1,0,-1 1 8 8 15 
-1,-1,2 1 0 3 2 
-1,-1,1 6 10 9 17 
-1,-1,0 2 8 4 10 
-1,-2,1 0 2 7 9 
-2,2,-2 9 4 6 12 
-2,1,-1 6 5 4 9 
-2,0,0 3 5 13 
-2,-1,1 2 3 7 10 
-2,-2,2 0 1 0 1 

9 
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5.3  Cho Heuristic 

As we analyzed the best heuristic in Chapter IV, the primal effective gradient 

methods such as TOYODA and L – M performed well when the constraint slackness 

levels were equal.  The dual effective gradient method was the best when the constraint 

slackness levels were mixed.  L – M, an improved version of the TOYODA heuristic, 

always considers the worst constraint, so it is not as affected by inter-constraint 

correlation. Therefore, we combined characteristics of S – T, into the L – M heuristic.  

The Cho heuristic is thus extended from L – M heuristic based on our knowledge of S – T 

from Chapter IV. 

The following algorithm is a general explanation of the Cho heuristic and a 

comparison with Loulou and Michaelides’ method.  Our method differs in defining  the 

penalty factor in step 3.  We used the same symbols as Toyoda (1975): Pi  = project i, i = 

1, …, n; Rj = restricted resource j, j  = 1, …, m;  T = Set of all projects; Tu = set of 

projects accepted so far;  TD = set of projects not in Tu, T – Tu; Tc = set of candidate 

projects; Cj = total quantity of Rj required by the set of accepted projects, 

i.e., .  Pu = cumulative total quantity vector (Toyoda, 1975).  Since m = 2, 

Pu = (C

∑ ∈
=

TuP iji
i

aC

1, C2).  The vector Sj is the surplus amount which is to subtract RHS of each 

constraint from sum of all row constraint coefficients for the appropriate row.  Define S = 

slack vector as used in S – T heuristic, i.e., S = (S1, S2) and RHS values, B = (1, 1); Ai =  

vector of constraint coefficients, Ai = (ai1, ai2). 

 Step 1:  Initialization. 

  Tu = ∅, TD = T,  Pu = Zero Vector 
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   Z = 0,  Xi = 0,  i = 1, …, 100 

  Step 2:  Assign all candidate projects to Tc, candidate project set. 

   {Tc }1| PuAandTPP iDii −≤∈=  

   If Tc =  ∅ STOP 

   Otherwise go to Step 3. 

Step 3:  Compute effective gradient  for projects in Tc as follows: 

   (a) If Pu is a zero vector then: 

   )/(2 21 iiii aac +⋅=G   (Toyoda 1975) 

   (b) Otherwise, compute; 

   }/)({max 2
2

2
12,1 CCCaS jijjji +⋅⋅= =U  

   G  iii Uc /=

Step 4:  k = arg max { Gi | Pi ∈ Tc  and  feasible } 

Step 5:  Calculate: 

   Z = Z + ck, Xk = 1,   Tu = Tu + { Pk} 

   Pu = Pu + Pk,     TD = T – {Pk} 

   Go to Step 2. 

Each iteration selects a new project with the largest gradient.  For the penalty cost, 

Ui, multiplying slack vector, Sj, and constraint coefficients, aij, provides a better direction 

especially when two constraints greatly differ.  The multiplier Cj considers the 

cumulative amount added so far to the jth constraint.  For example, if the characteristic of 

a problem is tight and loose, S1 should be large and S2 should be small.  Since a greedy 

heuristic always selects the project with the largest gradient, it selects the project whose 
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objective function coefficient cj is relatively large while constraint coefficients aij is 

relatively small.  In this case, ai1 is generally larger than ai2 because the sum of ai1 is 

much larger than the sum of ai2.  So, we are concerned with only ai1, not ai2.  Multiplying 

S1 and C1 by ai1 make us consider only the tight constraint.  This enables a better 

direction in the feasible region considering the tight constraint.  The code is available in 

appendix E. 

5.3.1  General Results 

The overall result of the new developed method is better than each of three 

heuristics as shown below in Table 17.  The reason is appealing since the Cho heuristic is 

a general purpose greedy approach not tied to problem type analysis. 

Table 17.  Comparison of CHO heuristic with test heuristics 

Versus Heuristic BETTER TIE WORSE 
TOYODA 714 107 299 

S – T 557 215 348 
L – M 774 70 276 

 
5.3.2  Results under various constraint slackness 
  

The Cho heuristic really improves primal heuristic performance when constraint 

slackness levels are mixed.  Even though this method is based on the L – M heuristic, this 

method is significantly better than TOYODA or L – M at constraint slackness, (1, 2), and 

(2, 1).  As we may expect, the slack vector enables the heuristic to use resources more 

effectively at constraints.  The results are graphed in Figure 20 and summarized in Table 

18.  For comparison, Cho heuristic in Table 18 shows the number counted when the prior 

best heuristic and the Cho heuristic have the same or better value.   
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Table 18.  The number of times best by each heuristic under constraint slackness 

Method Constraint 
Slackness TOYODA S - T L - M CHO 

1,1 87 15 123 101 

1,2 22 186 15 128 

2,1 24 184 13 126 

2,2 41 17 147 70 
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VI. Conclusion 

6.1  Summary 
 

The purpose of this research was to understand what makes a heuristic perform 

better.  To accomplish this goal, 1120 problems were examined based on problem 

constraint slackness setting and correlation structure.  The research focused on which 

heuristic gave the best solution under these various conditions.  The methodology 

included two non-parametric statistic tests to prove whether or not any heuristic method 

was significantly better than the other methods.  In the results and analyses chapter, the 

best heuristic was examined.  We also studied why the best heuristic behaved as it did as 

a function of problem characteristics.  Using this knowledge we examined two new 

heuristics: one based on problem type, a second based on a new penalty vector.  These 

new heuristic were competitively tested against the three original heuristics and 

performed quite well. 

6.2  Findings  

Three heuristics, TOYODA; S – T; L – M, were examined under different 

combinations of constraint slackness and correlation structure.  For a constraint slackness 

of tight and tight, the primal effective gradient methods such as TOYODA and L – M 

perform well because these methods evaluate their effective gradient at each iteration.  It 

is very important to point out that TOYODA and L – M selects the next variable to set to 

1 by recalculating the remaining resources which is the reason for yielding better solution 

s in comparison with S – T.  For mixed constraint slackness, S – T is best because its 

slack vector, S, provides a better direction into the feasible region.   
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For correlation structure, Toyoda’s method has better results when 1CA
ρ  and 2CA

ρ  

have the opposite sign of correlation and 21AA
ρ  has negative correlation.  Since 

TOYODA always evaluates the penalty cost at each iteration, the resource is used to keep 

a balance between two constraints, even though correlation has the opposite signs.  The S 

– T method does not have any dominant correlation structure.  However, when 

correlation does not exist among coefficients, S – T appears to yield better solution.  This 

is mainly caused by the S – T method’s better performance on mixed constraint settings.  

L – M has the merit that it considers one of the constraints, and is not affected by 21AA
ρ .  

Thus, when 1CA
ρ  or 2CA

ρ  have strongly negative correlation, L – M has better 

performance. 

A meta-heuristic based on problem characteristics works well.  Our approach 

employed an analysis of constraint slackness and correlation structure to choose a “best” 

heuristic.  Test results confirmed overall consistent results. 

Knowledge gained from the empirical analysis led to an improved primal greedy 

heuristic.  Both TOYODA and L – M struggled with mixed slackness settings while S – 

T did not.  A new penalty factor that incorporated S – T characteristics evened out the 

primal heuristic performance. 

6.3  Recommendations 

There are several areas that should be examined in future research of this topic.  

This thesis examined 1120 problems which are 2KP with 100 variables.  One could 

examine more constraints, more variables, and larger test problems.  In addition, one 

could change the correlation induction method to create more correlation settings, and 
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produce more constraint slackness settings.  Also, various types of heuristics could be 

examined such as tabu search, genetic algorithms, simulated annealing, or an ant colony 

optimization algorithm.   
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Appendix A.  TOYODA Heuristic Code 
 
 
Sub TOYODA() 
    Dim objcoeff(1 To 100, 1 To 1120) 
    Dim rhscoeff(1 To 2, 1 To 1120) 
    Dim a1coeff(1 To 100, 1 To 1120) 
    Dim a2coeff(1 To 100, 1 To 1120) 
    Dim objvalue(1 To 1120) 
 
    Sheets("data").Activate 
    Range("A1").Activate 
    For k = 1 To 1120 
        For i = 1 To 2 
        rhscoeff(i, k) = ActiveCell.Offset(0, i + 3).Value 
        Next i 
        For i = 1 To 100 
            objcoeff(i, k) = ActiveCell.Offset(1, i - 1).Value 
            a1coeff(i, k) = ActiveCell.Offset(2, i - 1).Value 
            a2coeff(i, k) = ActiveCell.Offset(3, i - 1).Value 
            Next i 
        objvalue(k) = ActiveCell.Offset(0, 3).Value 
        ActiveCell.Offset(4, 0).Activate 
    Next k 
     
 
Dim m As Integer, n As Integer 
Dim Pi(1 To 100) As Integer, R1 As Integer, R2 As Integer 
Dim Ki(1 To 100) As Integer 
Dim Fi1(1 To 100) As Single, Fi2(1 To 100) As Single 
Dim Z As Integer 
Dim Xi(1 To 100) As Integer 
Dim Tu(1 To 100) As Integer 
Dim Td(1 To 100) As Integer, PPi(1 To 100, 1 To 2) As Single 
Dim C1 As Single, C2 As Single 
Dim PPu(1 To 2) As Single 
Dim B(1 To 2) As Integer 
Dim Tc(1 To 100) As Integer 
Dim Ui(1 To 100) As Single, Gi(1 To 100) As Single 
 
 
'Step 1' 
 
Sheets("Results").Activate 
Range("C1").Activate 
 
For k = 1 To 1120 
 
For i = 1 To 100 
    Tu(i) = 0 
    Tc(i) = 0 
    Td(i) = 1 
    Xi(i) = 0 
    Fi1(i) = a1coeff(i, k) / rhscoeff(1, k) 
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    Fi2(i) = a2coeff(i, k) / rhscoeff(2, k) 
    Ki(i) = objcoeff(i, k) 
    PPi(i, 1) = Fi1(i) 
    PPi(i, 2) = Fi2(i) 
       
Next i 
     
PPu(1) = 0 
PPu(2) = 0 
R1 = rhscoeff(1, k) 
R2 = rhscoeff(2, k) 
m = 0 
Z = 0 
B(1) = 1 
B(2) = 1 
 
'Step 2' 
For j = 1 To 100 
  For i = 1 To 100 
    If Td(i) = 1 Then 
        If PPi(i, 1) <= B(1) - PPu(1) And PPi(i, 2) <= B(2) - PPu(2) 

Then 
          Tc(i) = 1 
        Else 
          Tc(i) = 0 
        End If 
    End If 
  Next i 
 
'Step 3' 
 
  n = 0 
  For i = 1 To 100 
    If Tc(i) = 0 Then 
        n = n + 1 
    End If 
  Next i 
   If n = 100 Then 
     Exit For 
   End If 
     
'Step 4' 
 
  If PPu(1) = 0 And PPu(2) = 0 Then 
    For i = 1 To 100 
        If Tc(i) = 1 Then 
            Gi(i) = Ki(i) * (2 ^ 0.5) / (Fi1(i) + Fi2(i)) 
        End If 
    Next i 
  Else 
 
    C1 = 0 
    C2 = 0 
    For i = 1 To 100 
        If Tu(i) = 1 Then 
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            C1 = C1 + Fi1(i) 
            C2 = C2 + Fi2(i) 
        End If 
    Next i 
         
    For i = 1 To 100 
        If Tc(i) = 1 Then 
            If Fi1(i) * C1 + Fi2(i) * C2 = 0 Then 
                Gi(i) = 100000 
            End If 
            Ui(i) = (Fi1(i) * C1 + Fi2(i) * C2) / ((C1 ^ 2 + C2 ^ 2) ^ 

0.5) 
            Gi(i) = Ki(i) / Ui(i) 
        End If 
    Next i 
   End If 
 
'Step 5' 
 
  Max = 0 
  For i = 1 To 100 
    If Tc(i) = 1 Then 
        If Gi(i) > Max Then 
            Max = Gi(i) 
            m = i 
        End If 
    End If 
  Next i 
 
 
'Step 6' 
  Tu(m) = 1 
  PPu(1) = PPu(1) + PPi(m, 1) 
  PPu(2) = PPu(2) + PPi(m, 2) 
  Z = Z + Ki(m) 
  Td(m) = 0 
  Tc(m) = 0 
  Xi(m) = 1 
  Range("c1").Activate 
 
Next j 
 
 
Next k 
 
End Sub 
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Appendix B.  S – T Heuristic Code 
 
 
Sub senju() 
Dim objcoeff(1 To 100, 1 To 1120) 
Dim rhscoeff(1 To 2, 1 To 1120) 
Dim a1coeff(1 To 100, 1 To 1120) 
Dim a2coeff(1 To 100, 1 To 1120) 
Dim objvalue(1 To 1120) 
 
Sheets("data").Activate 
Range("A1").Activate 
For k = 1 To 1120 
For i = 1 To 2 
rhscoeff(i, k) = ActiveCell.Offset(0, i + 3).Value 
Next i 
For i = 1 To 100 
objcoeff(i, k) = ActiveCell.Offset(1, i - 1).Value 
a1coeff(i, k) = ActiveCell.Offset(2, i - 1).Value 
a2coeff(i, k) = ActiveCell.Offset(3, i - 1).Value 
Next i 
objvalue(k) = ActiveCell.Offset(0, 3).Value 
ActiveCell.Offset(4, 0).Activate 
Next k 
 
 
'run the senju heuristic' 
 
Dim m As Integer, n As Integer, p As Integer 
Dim Pi(1 To 100) As Integer, R1 As Integer, R2 As Integer 
Dim Ki(1 To 100) As Integer 
Dim ai1(1 To 100) As Single, ai2(1 To 100) As Single 
Dim Z As Integer 
Dim Xi(1 To 100) As Integer 
Dim Sai1 As Single, Sai2 As Single 
Dim S1 As Single, S2 As Single 
Dim Ni(1 To 100) As Single 
Dim Ui(1 To 100) As Single, Gi(1 To 100) As Single 
 
'Step 1' 
 
Sheets("Results").Activate 
Range("D1").Activate 
 
 
For k = 1 To 1120 
     
    R1 = rhscoeff(1, k) 
    R2 = rhscoeff(2, k) 
    Sai1 = 0 
    Sai2 = 0 
 
    'assign values to the variables 
    For i = 1 To 100 
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        Xi(i) = 1 
        Pi(i) = 1 
        ai1(i) = a1coeff(i, k) / rhscoeff(1, k) * 100 
        ai2(i) = a2coeff(i, k) / rhscoeff(2, k) * 100 
        Ki(i) = objcoeff(i, k) 
        Sai1 = Sai1 + ai1(i) 
        Sai2 = Sai2 + ai2(i) 
     Next i 
         
     S1 = Sai1 - 100 
     S2 = Sai2 - 100 
     
    'find Gi' 
     For i = 1 To 100 
        Ni(i) = S1 * ai1(i) + S2 * ai2(i) 
        Gi(i) = Ki(i) / Ni(i) 
     Next i 
 
  For j = 1 To 100 
 
    'sort based on Gi 
     Min = 10000 
     For i = 1 To 100 
       If Pi(i) = 1 Then 
        If Gi(i) < Min Then 
            Min = Gi(i) 
            m = i 
        End If 
       End If 
     Next i 
     
  
    'drop project with the lowest gradient' 
     Pi(m) = 0 
     Xi(m) = 0 
     S1 = S1 - ai1(m) 
     S2 = S2 - ai2(m) 
     Z = 0 
     
     If S1 <= 0 And S2 <= 0 Then 
        For i = 1 To 100 
            Z = Z + Xi(i) * Ki(i) 
        Next i 
         
        'place Gi in order 
        For i = 1 To 100 
           If Xi(i) = 0 Then 
             Range("z2:z102").Cells(i, 1).Value = Gi(i) 
             Range("y2:y102").Cells(i, 1).Value = i 
           End If 
        Next i 
         
        Range("Y2:Z101").Select 
        Selection.Sort Key1:=Range("Z2"), Order1:=xlDescending, 

Header:=xlGuess, _ 
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        OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom 
        
       'add back in a product 
 
         For i = 1 To 100 
                p = Range("y2:Y102").Cells(i, 1).Value 
                If p > 0 Then 
                 If ai1(p) <= -S1 And ai2(p) <= -S2 Then 
                    Pi(p) = 1 
                    Xi(p) = 1 
                    S1 = S1 + ai1(p) 
                    S2 = S2 + ai2(p) 
                    Z = Z + Ki(p) 
                 End If 
                End If 
          Next i 
        Exit For 
      End If 
     
  Next j 
 
 
Next k 
End Sub 
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Appendix C.  L – M Heuristic Code 
 
 
Sub LOULOU() 
Dim objcoeff(1 To 100, 1 To 1120) 
Dim rhscoeff(1 To 2, 1 To 1120) 
Dim a1coeff(1 To 100, 1 To 1120) 
Dim a2coeff(1 To 100, 1 To 1120) 
Dim objvalue(1 To 1120) 
Dim objvaluehill(1 To 1120) 
Dim i As Integer, j As Integer, k As Integer 
 
Sheets("data").Activate 
Range("A1").Activate 
For k = 1 To 1120 
For i = 1 To 2 
rhscoeff(i, k) = ActiveCell.Offset(0, i + 3).Value 
Next i 
For i = 1 To 100 
objcoeff(i, k) = ActiveCell.Offset(1, i - 1).Value 
a1coeff(i, k) = ActiveCell.Offset(2, i - 1).Value 
a2coeff(i, k) = ActiveCell.Offset(3, i - 1).Value 
Next i 
objvalue(k) = ActiveCell.Offset(0, 3).Value 
objvaluehill(k) = ActiveCell.Offset(0, 13).Value 
ActiveCell.Offset(4, 0).Activate 
 
Next k 
 
'run the L- M heuristic' 
 
Dim m As Integer, n As Integer 
Dim Pi(1 To 100) As Integer, R1 As Integer, R2 As Integer 
Dim Ki(1 To 100) As Integer 
Dim Fi1(1 To 100) As Single, Fi2(1 To 100) As Single 
Dim Z As Integer 
Dim Xi(1 To 100) As Integer 
Dim Tu(1 To 100) As Integer 
Dim Td(1 To 100) As Integer, PPi(1 To 100, 1 To 2) As Single 
Dim DA1 As Single, DA2 As Single 
Dim PPu(1 To 2) As Single 
Dim B(1 To 2) As Integer 
Dim Tc(1 To 100) As Integer 
Dim Vi(1 To 100) As Single, Gi(1 To 100) As Single 
Dim Max As Single 
 
 
'Step 1' 
 
Sheets("Results").Activate 
Range("e1").Activate 
 
For k = 1 To 1120 
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  If DA1 = 1 Or DA2 = 1 Then 
       Exit For 
  End If 
       

 
For i = 1 To 100 
    Tu(i) = 0 
    Tc(i) = 0 
    Td(i) = 1 
    Xi(i) = 0 
    Fi1(i) = a1coeff(i, k) / rhscoeff(1, k) 
    Fi2(i) = a2coeff(i, k) / rhscoeff(2, k) 
    Ki(i) = objcoeff(i, k) 
    PPi(i, 1) = Fi1(i) 
    PPi(i, 2) = Fi2(i) 
Next i 
     
PPu(1) = 0 
PPu(2) = 0 
R1 = rhscoeff(1, k) 
R2 = rhscoeff(2, k) 
DA1 = 0 
DA2 = 0 
m = 0 
Z = 0 
B(1) = 1 
B(2) = 1 
 
'Step 2' 
For j = 1 To 100 
  For i = 1 To 100 
    If Td(i) = 1 Then 
        If PPi(i, 1) <= B(1) - PPu(1) And PPi(i, 2) <= B(2) - PPu(2) 

Then 
          Tc(i) = 1 
        Else 
          Tc(i) = 0 
        End If 
    End If 
  Next i 
 
'Step 3' 
 
  n = 0 
  For i = 1 To 100 
    If Tc(i) = 0 Then 
        n = n + 1 
    End If 
  Next i 
   If n = 100 Then 
     Exit For 
   End If 
     
'Step 4' 
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Next k 
 
End Sub 

    SC1 = 0 
    SC2 = 0 
    For i = 1 To 100 
        If Tc(i) = 1 Then 
            SC1 = SC1 + Fi1(i) 
            SC2 = SC2 + Fi2(i) 
         End If 
    Next i 
     
   For i = 1 To 100 
        If Tc(i) = 1 Then 
                V1 = (DA1 + Fi1(i)) * ((SC1 - Fi1(i))) / ((1 - DA1 - 

Fi1(i) + 0.00000001)) 
                V2 = (DA2 + Fi2(i)) * ((SC2 - Fi2(i))) / ((1 - DA2 - 

Fi2(i) + 0.00000001)) 
             If V1 > V2 Then 
                Vi(i) = V1 
             Else 
                Vi(i) = V2 
             End If 
             Gi(i) = Ki(i) / (Vi(i) + 0.0000000001) 
        End If 
    Next i 
 
 
'Step 5' 
 
  Max = 0 
  For i = 1 To 100 
    If Tc(i) = 1 Then 
        If Gi(i) > Max Then 
            Max = Gi(i) 
            m = i 
        End If 
    End If 
  Next i 
 
 
'Step 6' 
  Tu(m) = 1 
  DA1 = DA1 + Fi1(m) 
  DA2 = DA2 + Fi2(m) 
  PPu(1) = PPu(1) + PPi(m, 1) 
  PPu(2) = PPu(2) + PPi(m, 2) 
  Z = Z + Ki(m) 
  Td(m) = 0 
  Tc(m) = 0 
  Xi(m) = 1 
  Range("e1").Activate 
 
Next j 
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        Sai2(k) = Sai2(k) + a2coeff(i, k) 
        Ssqobj(k) = Ssqobj(k) + (objcoeff(i, k)) ^ 2 
        Ssqai1(k) = Ssqai1(k) + (a1coeff(i, k)) ^ 2 
        Ssqai2(k) = Ssqai2(k) + (a2coeff(i, k)) ^ 2 

Appendix D.  New Combined  Heuristic Code 
 
 
Sub NewCombinedHeuristic() 
 
Sheets("data").Activate 
Range("A1").Activate 
 For t = 1 To 1120 
        For i = 1 To 2 
        rhscoeff(i, t) = ActiveCell.Offset(0, i + 3).Value 
        Next i 
        For i = 1 To 100 
            objcoeff(i, t) = ActiveCell.Offset(1, i - 1).Value 
            a1coeff(i, t) = ActiveCell.Offset(2, i - 1).Value 
            a2coeff(i, t) = ActiveCell.Offset(3, i - 1).Value 
            Next i 
        objvalue(t) = ActiveCell.Offset(0, 3).Value 
        ActiveCell.Offset(4, 0).Activate 
    Next t 
 
Dim Sobj(1 To 1120) As Long 
Dim Sai1(1 To 1120) As Long, Sai2(1 To 1120) As Long 
Dim Ssqobj(1 To 1120) As Long, Ssqai1(1 To 1120) As Long 
Dim Ssqai2(1 To 1120) As Long, Spdca1(1 To 1120) As Long 
Dim Spdca2(1 To 1120) As Long, Spda1a2(1 To 1120) As Long 
Dim slackness1(1 To 1120) As Single 
Dim slackness2(1 To 1120) As Single 
Dim nmCA1(1 To 1120) 
Dim denCA1(1 To 1120) 
Dim nmCA2(1 To 1120) 
Dim denCA2(1 To 1120) 
Dim nmA1A2(1 To 1120) 
Dim denA1A2(1 To 1120) 
Dim corrCA1(1 To 1120) As Double 
Dim corrCA2(1 To 1120) As Double 
Dim corrA1A2(1 To 1120) As Double 
 
For k = 1 To 1120 
Sai1(k) = 0 
Sai2(k) = 0 
Sobj(k) = 0 
Ssqobj(k) = 0 
Ssqai1(k) = 0 
Ssqai2(k) = 0 
Spdca1(k) = 0 
Spdca2(k) = 0 
Spda1a2(k) = 0 
 
For i = 1 To 100 
        Sobj(k) = Sobj(k) + objcoeff(i, k) 
        Sai1(k) = Sai1(k) + a1coeff(i, k) 
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    End If 
ElseIf corrCA1(k) < 0.75 And corrCA1(k) > 0.25 And corrCA2(k) > 0.25 

And corrCA2(k) < 0.75 And corrA1A2(k) > 0.75 Then 
    Call TOYODA(k) 

        Spdca1(k) = Spdca1(k) + (objcoeff(i, k) * a1coeff(i, k)) 
        Spdca2(k) = Spdca2(k) + (objcoeff(i, k) * a2coeff(i, k)) 
        Spda1a2(k) = Spda1a2(k) + (a1coeff(i, k) * a2coeff(i, k)) 
Next i 
Next k 
 
For k = 1 To 1120 
 
slackness1(k) = rhscoeff(1, k) / Sai1(k) 
slackness2(k) = rhscoeff(2, k) / Sai2(k) 
nmCA1(k) = 100 * Spdca1(k) - Sobj(k) * Sai1(k) 
denCA1(k) = ((100 * Ssqobj(k) - ((Sobj(k)) ^ 2)) ^ 0.5) * ((100 * 

Ssqai1(k) - ((Sai1(k)) ^ 2)) ^ 0.5) 
nmCA2(k) = 100 * Spdca2(k) - Sobj(k) * Sai2(k) 
denCA2(k) = ((100 * Ssqobj(k) - ((Sobj(k)) ^ 2)) ^ 0.5) * ((100 * 

Ssqai2(k) - ((Sai2(k)) ^ 2)) ^ 0.5) 
nmA1A2(k) = 100 * Spda1a2(k) - Sai1(k) * Sai2(k) 
denA1A2(k) = ((100 * Ssqai1(k) - ((Sai1(k)) ^ 2)) ^ 0.5) * ((100 * 

Ssqai2(k) - ((Sai2(k)) ^ 2)) ^ 0.5) 
corrCA1(k) = nmCA1(k) / denCA1(k) 
corrCA2(k) = nmCA2(k) / denCA2(k) 
corrA1A2(k) = nmA1A2(k) / denA1A2(k) 
Next k 
 
 
For k = 1 To 1120 
 
If corrCA1(k) > 0.75 And corrCA2(k) < -0.25 And corrCA2(k) > -0.75 And 

corrA1A2(k) < -0.25 And corrA1A2(k) > -0.75 Then 
    Call TOYODA(k) 
ElseIf corrCA1(k) > 0.75 And corrCA2(k) < -0.75 And corrA1A2(k) < -0.75 

Then 
    Call TOYODA(k) 
ElseIf corrCA1(k) < -0.25 And corrCA1(k) > -0.75 And corrCA2(k) > 0.75 

And corrA1A2(k) < -0.25 And corrA1A2(k) > -0.75 Then 
    Call TOYODA(k) 
ElseIf corrCA1(k) < -0.75 And corrCA2(k) > 0.75 And corrA1A2(k) < -0.75 

Then 
    If slackness1(k) < 0.45 And slackness2(k) > 0.65 Then 
       Call LOULOU(k) 
    Else 
       Call TOYODA(k) 
    End If 
ElseIf corrCA1(k) < -0.75 And corrCA2(k) < 0.75 And corrCA2(k) > 0.25 

And corrA1A2(k) < -0.25 And corrA1A2(k) > -0.75 Then 
    If slackness1(k) > 0.65 And slackness2(k) > 0.65 Then 
       Call LOULOU(k) 
    ElseIf slackness1(k) < 0.45 And slackness2(k) > 0.65 Then 
       Call LOULOU(k) 
    Else 
       Call TOYODA(k) 
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And corrA1A2(k) > 0.25 And corrA1A2(k) < 0.75 Then 
    If slackness1(k) < 0.45 And slackness2(k) < 0.45 Then 
        Call TOYODA(k) 
    ElseIf slackness1(k) > 0.65 And slackness2(k) > 0.65 Then 

ElseIf corrCA1(k) > -0.25 And corrCA1(k) < 0.25 And corrCA2(k) > -0.25 
And corrCA2(k) < 0.25 And corrA1A2(k) < -0.75 Then 

    Call senju(k) 
ElseIf corrCA1(k) > -0.25 And corrCA1(k) < 0.25 And corrCA2(k) > -0.25 

And corrCA2(k) < 0.25 And corrA1A2(k) > -0.75 And corrA1A2(k) < -
0.25 Then 

    Call senju(k) 
ElseIf corrCA1(k) > -0.25 And corrCA1(k) < 0.25 And corrCA2(k) > -0.25 

And corrCA2(k) < 0.25 And corrA1A2(k) > -0.25 And corrA1A2(k) < 
0.25 Then 

    Call senju(k) 
ElseIf corrCA1(k) > -0.25 And corrCA1(k) < 0.25 And corrCA2(k) > -0.25 

And corrCA2(k) < 0.25 And corrA1A2(k) > 0.25 And corrA1A2(k) < 
0.75 Then 

    If slackness1(k) > 0.65 And slackness2(k) > 0.65 Then 
       Call TOYODA(k) 
    Else 
       Call senju(k) 
    End If 
ElseIf corrCA1(k) > -0.25 And corrCA1(k) < 0.25 And corrCA2(k) > -0.25 

And corrCA2(k) < 0.25 And corrA1A2(k) > 0.75 Then 
    Call senju(k) 
ElseIf corrCA1(k) > -0.25 And corrCA1(k) < 0.25 And corrCA2(k) < -0.75 

And corrA1A2(k) > -0.25 And corrA1A2(k) < 0.25 Then 
    If slackness1(k) < 0.45 And slackness2(k) > 0.65 Then 
       Call senju(k) 
    Else 
       Call LOULOU(k) 
    End If 
ElseIf corrCA1(k) < -0.75 And corrCA2(k) > -0.25 And corrCA2(k) < 0.25 

And corrA1A2(k) > -0.25 And corrA1A2(k) < 0.25 Then 
    If slackness1(k) > 0.65 And slackness2(k) < 0.45 Then 
       Call senju(k) 
    Else 
       Call LOULOU(k) 
    End If 
ElseIf corrCA1(k) < -0.25 And corrCA1(k) > -0.75 And corrCA2(k) < -0.75 

And corrA1A2(k) > 0.25 And corrA1A2(k) < 0.75 Then 
    If slackness1(k) < 0.45 And slackness2(k) > 0.65 Then 
       Call senju(k) 
    Else 
        Call LOULOU(k) 
    End If 
ElseIf corrCA1(k) < -0.75 And corrCA2(k) < -0.25 And corrCA2(k) > -0.75 

And corrA1A2(k) > 0.25 And corrA1A2(k) < 0.75 Then 
    If slackness1(k) > 0.65 And slackness2(k) < 0.45 Then 
        Call senju(k) 
    Else 
        Call LOULOU(k) 
    End If 
ElseIf corrCA1(k) > 0.75 And corrCA2(k) > 0.25 And corrCA2(k) < 0.75 
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        Call senju(k) 
    End If 

        Call LOULOU(k) 
    Else 
        Call senju(k) 
    End If 
ElseIf corrCA1(k) > 0.25 And corrCA1(k) < 0.75 And corrCA2(k) > 0.25 

And corrCA2(k) < 0.75 And corrA1A2(k) > 0.25 And corrA1A2(k) < 
0.75 Then 

    If slackness1(k) < 0.45 And slackness2(k) < 0.45 Then 
        Call TOYODA(k) 
    ElseIf slackness1(k) > 0.65 And slackness2(k) > 0.65 Then 
        Call TOYODA(k) 
    Else 
        Call senju(k) 
    End If 
ElseIf corrCA1(k) > 0.25 And corrCA1(k) < 0.75 And corrCA2(k) > 0.25 

And corrCA2(k) < 0.75 And corrA1A2(k) > -0.25 And corrA1A2(k) < 
0.25 Then 

    If slackness1(k) < 0.45 And slackness2(k) < 0.45 Then 
        Call TOYODA(k) 
    ElseIf slackness1(k) > 0.65 And slackness2(k) > 0.65 Then 
        Call TOYODA(k) 
    Else 
        Call senju(k) 
    End If 
ElseIf corrCA1(k) > 0.25 And corrCA1(k) < 0.75 And corrCA2(k) < 0.25 

And corrCA2(k) > -0.25 And corrA1A2(k) > 0.25 And corrA1A2(k) < 
0.75 Then 

    If slackness1(k) < 0.45 And slackness2(k) < 0.45 Then 
        Call TOYODA(k) 
    ElseIf slackness1(k) > 0.65 And slackness2(k) > 0.65 Then 
        Call LOULOU(k) 
    Else 
        Call senju(k) 
    End If 
ElseIf corrCA1(k) > 0.25 And corrCA1(k) < 0.75 And corrCA2(k) < 0.25 

And corrCA2(k) > -0.25 And corrA1A2(k) > -0.25 And corrA1A2(k) < 
0.25 Then 

    If slackness1(k) < 0.45 And slackness2(k) < 0.45 Then 
        Call TOYODA(k) 
    ElseIf slackness1(k) > 0.65 And slackness2(k) > 0.65 Then 
        Call LOULOU(k) 
    Else 
        Call senju(k) 
    End If 
ElseIf corrCA1(k) > 0.25 And corrCA1(k) < 0.75 And corrCA2(k) < -0.75 

And corrA1A2(k) < -0.25 And corrA1A2(k) > -0.75 Then 
    If slackness1(k) < 0.45 And slackness2(k) < 0.45 Then 
        Call TOYODA(k) 
    ElseIf slackness1(k) > 0.65 And slackness2(k) > 0.65 Then 
        Call LOULOU(k) 
    Else 
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End Sub
 
 

ElseIf corrCA1(k) > -0.25 And corrCA1(k) < 0.25 And corrCA2(k) < -0.25 
And corrCA2(k) > -0.75 And corrA1A2(k) > 0.25 And corrA1A2(k) < 
0.75 Then 

    If slackness1(k) < 0.45 And slackness2(k) < 0.45 Then 
        Call LOULOU(k) 
    ElseIf slackness1(k) > 0.65 And slackness2(k) > 0.65 Then 
        Call TOYODA(k) 
    Else 
        Call senju(k) 
    End If 
ElseIf corrCA1(k) < -0.25 And corrCA1(k) > -0.75 And corrCA2(k) < 0.25 

And corrCA2(k) > -0.25 And corrA1A2(k) > 0.25 And corrA1A2(k) < 
0.75 Then 

    If slackness1(k) < 0.45 And slackness2(k) < 0.45 Then 
        Call LOULOU(k) 
    Else 
        Call senju(k) 
    End If 
 
ElseIf corrCA1(k) < -0.25 And corrCA1(k) > -0.75 And corrCA2(k) < -0.25 

And corrCA2(k) > -0.75 And corrA1A2(k) > 0.75 Then 
    If slackness1(k) < 0.45 And slackness2(k) < 0.45 Then 
        Call TOYODA(k) 
    ElseIf slackness1(k) > 0.65 And slackness2(k) > 0.65 Then 
        Call LOULOU(k) 
    Else 
        Call senju(k) 
    End If 
 
ElseIf corrCA1(k) > 0.75 And corrCA2(k) > 0.75 And corrA1A2(k) > 0.75 

Then 
    If slackness1(k) < 0.45 And slackness2(k) < 0.45 Then 
        Call TOYODA(k) 
    ElseIf slackness1(k) > 0.65 And slackness2(k) > 0.65 Then 
        Call LOULOU(k) 
    Else 
        Call senju(k) 
    End If 
 
 
ElseIf slackness1(k) < 0.45 And slackness2(k) < 0.45 Then 
   Call LOULOU(k) 
ElseIf slackness1(k) > 0.65 And slackness2(k) > 0.65 Then 
   Call LOULOU(k) 
Else 
  Call senju(k) 
 
End If 
 
Next k 
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For i = 1 To 100 
    Tu(i) = 0 

Appendix E.  Cho Heuristic Code 
 
 
Sub ChoHeuristic() 
 
    Dim objcoeff(1 To 100, 1 To 1120) 
    Dim rhscoeff(1 To 2, 1 To 1120) 
    Dim a1coeff(1 To 100, 1 To 1120) 
    Dim a2coeff(1 To 100, 1 To 1120) 
    Dim objvalue(1 To 1120) 
 
    Sheets("data").Activate 
    Range("A1").Activate 
    For k = 1 To 1120 
        For i = 1 To 2 
        rhscoeff(i, k) = ActiveCell.Offset(0, i + 3).Value 
        Next i 
        For i = 1 To 100 
            objcoeff(i, k) = ActiveCell.Offset(1, i - 1).Value 
            a1coeff(i, k) = ActiveCell.Offset(2, i - 1).Value 
            a2coeff(i, k) = ActiveCell.Offset(3, i - 1).Value 
            Next i 
        objvalue(k) = ActiveCell.Offset(0, 3).Value 
        ActiveCell.Offset(4, 0).Activate 
    Next k 
     
 
'run Cho heuristic' 
 
Dim m As Integer, n As Integer 
Dim Pi(1 To 100) As Integer, R1 As Integer, R2 As Integer 
Dim Ki(1 To 100) As Integer 
Dim Fi1(1 To 100) As Single, Fi2(1 To 100) As Single 
Dim Z As Integer 
Dim Xi(1 To 100) As Integer 
Dim Tu(1 To 100) As Integer 
Dim Td(1 To 100) As Integer, PPi(1 To 100, 1 To 2) As Single 
Dim C1 As Single, C2 As Single 
Dim PPu(1 To 2) As Single 
Dim B(1 To 2) As Integer 
Dim Tc(1 To 100) As Integer 
Dim Ui(1 To 100) As Single, Gi(1 To 100) As Single 
Dim U1(1 To 100) As Single, U2(1 To 100) As Single 
 
 
'Step 1' 
 
Sheets("Results").Activate 
Range("I1").Activate 
 
For k = 1 To 1120 
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    Next i 
    'Step 4' 
    S1 = Sai1 - 1 
    S2 = Sai2 - 1 

    Tc(i) = 0 
    Td(i) = 1 
    Xi(i) = 0 
    Fi1(i) = a1coeff(i, k) / rhscoeff(1, k) 
    Fi2(i) = a2coeff(i, k) / rhscoeff(2, k) 
    Ki(i) = objcoeff(i, k) 
    PPi(i, 1) = Fi1(i) 
    PPi(i, 2) = Fi2(i) 
       
Next i 
     
PPu(1) = 0 
PPu(2) = 0 
R1 = rhscoeff(1, k) 
R2 = rhscoeff(2, k) 
m = 0 
Z = 0 
B(1) = 1 
B(2) = 1 
 
'Step 2' 
For j = 1 To 100 
  For i = 1 To 100 
    If Td(i) = 1 Then 
        If PPi(i, 1) <= B(1) - PPu(1) And PPi(i, 2) <= B(2) - PPu(2) 

Then 
          Tc(i) = 1 
        Else 
          Tc(i) = 0 
        End If 
    End If 
  Next i 
 
'Step 3' 
 
  n = 0 
  For i = 1 To 100 
    If Tc(i) = 0 Then 
        n = n + 1 
    End If 
  Next i 
   If n = 100 Then 
     Exit For 
   End If 
   
  Sai1 = 0 
  Sai2 = 0 
   
     For i = 1 To 100 
            Sai1 = Sai1 + Fi1(i) 
            Sai2 = Sai2 + Fi2(i) 
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'Step 6' 
  Tu(m) = 1 
  PPu(1) = PPu(1) + PPi(m, 1) 
  PPu(2) = PPu(2) + PPi(m, 2) 

     
  If PPu(1) = 0 And PPu(2) = 0 Then 
    For i = 1 To 100 
        If Tc(i) = 1 Then 
            Gi(i) = Ki(i) * (2 ^ 0.5) / (Fi1(i) + Fi2(i)) 
        End If 
    Next i 
  Else 
 
    C1 = 0 
    C2 = 0 
    For i = 1 To 100 
        If Tu(i) = 1 Then 
            C1 = C1 + Fi1(i) 
            C2 = C2 + Fi2(i) 
        End If 
         
    Next i 
         
    For i = 1 To 100 
        If Tc(i) = 1 Then 
            If Fi1(i) * C1 + Fi2(i) * C2 = 0 Then 
                Gi(i) = 100000 
            End If 
            U1(i) = (S1 * Fi1(i) * C1) / ((C1 ^ 2 + C2 ^ 2) ^ 0.5) 
            U2(i) = (S2 * Fi2(i) * C2) / ((C1 ^ 2 + C2 ^ 2) ^ 0.5) 
             
            If U1(i) > U2(i) Then 
               Ui(i) = U1(i) 
            Else 
               Ui(i) = U2(i) 
            End If 
             
            Gi(i) = Ki(i) / Ui(i) 
        End If 
    Next i 
   End If 
 
'Step 5' 
 
  Max = 0 
  For i = 1 To 100 
    If Tc(i) = 1 Then 
        If Gi(i) > Max Then 
            Max = Gi(i) 
            m = i 
        End If 
    End If 
  Next i 
 
 



 

  Z = Z + Ki(m) 
  Td(m) = 0 
  Tc(m) = 0 
  Xi(m) = 1 
  Range("I1").Activate 
 
Next j 
 
Next k 
 
End Sub 
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